71 research outputs found

    The clock genes Period 2 and Cryptochrome 2 differentially balance bone formation

    Get PDF
    Background: Clock genes and their protein products regulate circadian rhythms in mammals but have also been implicated in various physiological processes, including bone formation. Osteoblasts build new mineralized bone whereas osteoclasts degrade it thereby balancing bone formation. To evaluate the contribution of clock components in this process, we investigated mice mutant in clock genes for a bone volume phenotype. Methodology/Principal Findings: We found that Per2Brdm1 mutant mice as well as mice lacking Cry2-/- displayed significantly increased bone volume at 12 weeks of age, when bone turnover is high. Per2Brdm1 mutant mice showed alterations in parameters specific for osteoblasts whereas mice lacking Cry2-/- displayed changes in osteoclast specific parameters. Interestingly, inactivation of both Per2 and Cry2 genes leads to normal bone volume as observed in wild type animals. Importantly, osteoclast parameters affected due to the lack of Cry2, remained at the level seen in the Cry2-/- mutants despite the simultaneous inactivation of Per2. Conclusions/Significance: This indicates that Cry2 and Per2 affect distinct pathways in the regulation of bone volume with Cry2 influencing mostly the osteoclastic cellular component of bone and Per2 acting on osteoblast parameters

    Visualizing and Quantifying Intracellular Behavior and Abundance of the Core Circadian Clock Protein PERIOD2

    Get PDF
    SummaryTranscriptional-translational feedback loops (TTFLs) are a conserved molecular motif of circadian clocks. The principal clock in mammals is the suprachiasmatic nucleus (SCN) of the hypothalamus. In SCN neurons, auto-regulatory feedback on core clock genes Period (Per) and Cryptochrome (Cry) following nuclear entry of their protein products is the basis of circadian oscillation [1, 2]. In Drosophila clock neurons, the movement of dPer into the nucleus is subject to a circadian gate that generates a delay in the TTFL, and this delay is thought to be critical for oscillation [3, 4]. Analysis of the Drosophila clock has strongly influenced models of the mammalian clock, and such models typically infer complex spatiotemporal, intracellular behaviors of mammalian clock proteins. There are, however, no direct measures of the intracellular behavior of endogenous circadian proteins to support this: dynamic analyses have been limited and often have no circadian dimension [5–7]. We therefore generated a knockin mouse expressing a fluorescent fusion of native PER2 protein (PER2::VENUS) for live imaging. PER2::VENUS recapitulates the circadian functions of wild-type PER2 and, importantly, the behavior of PER2::VENUS runs counter to the Drosophila model: it does not exhibit circadian gating of nuclear entry. Using fluorescent imaging of PER2::VENUS, we acquired the first measures of mobility, molecular concentration, and localization of an endogenous circadian protein in individual mammalian cells, and we showed how the mobility and nuclear translocation of PER2 are regulated by casein kinase. These results provide new qualitative and quantitative insights into the cellular mechanism of the mammalian circadian clock

    Close-range remote sensing of Saturn's rings during Cassini's ring-grazing orbits and Grand Finale

    Get PDF
    Saturn’s rings are an accessible exemplar of an astrophysical disk, tracing the Saturn system’s dynamical processes and history. We present close-range remote-sensing observations of the main rings from the Cassini spacecraft. We find detailed sculpting of the rings by embedded masses, and banded texture belts throughout the rings. Saturn-orbiting streams of material impact the F ring. There are fine-scaled correlations among optical depth, spectral properties, and temperature in the B ring, but anticorrelations within strong density waves in the A ring. There is no spectral distinction between plateaux and the rest of the C ring, whereas the region outward of the Keeler gap is spectrally distinct from nearby regions. These results likely indicate that radial stratification of particle physical properties, rather than compositional differences, is responsible for producing these ring structures. © 2019 American Association for the Advancement of Science. All rights reserved

    The HEV Ventilator

    Full text link
    HEV is a low-cost, versatile, high-quality ventilator, which has been designed in response to the COVID-19 pandemic. The ventilator is intended to be used both in and out of hospital intensive care units, and for both invasive and non-invasive ventilation. The hardware can be complemented with an external turbine for use in regions where compressed air supplies are not reliably available. The standard modes provided include PC-A/C(Pressure Assist Control),PC-A/C-PRVC(Pressure Regulated Volume Control), PC-PSV (Pressure Support Ventilation) and CPAP (Continuous Positive airway pressure). HEV is designed to support remote training and post market surveillance via a web interface and data logging to complement the standard touch screen operation, making it suitable for a wide range of geographical deployment. The HEV design places emphasis on the quality of the pressure curves and the reactivity of the trigger, delivering a global performance which will be applicable to ventilator needs beyond theCOVID-19 pandemic. This article describes the conceptual design and presents the prototype units together with their performance evaluation.Comment: 34 pages, 18 figures, Extended version of the article submitted to PNA

    The LHCb upgrade I

    Get PDF
    The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software

    Galactic winds and cooling flows

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:D199248 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore