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Abstract

Background: Clock genes and their protein products regulate circadian rhythms in mammals but have also been implicated
in various physiological processes, including bone formation. Osteoblasts build new mineralized bone whereas osteoclasts
degrade it thereby balancing bone formation. To evaluate the contribution of clock components in this process, we
investigated mice mutant in clock genes for a bone volume phenotype.

Methodology/Principal Findings: We found that Per2Brdm1 mutant mice as well as mice lacking Cry22/2 displayed
significantly increased bone volume at 12 weeks of age, when bone turnover is high. Per2Brdm1 mutant mice showed
alterations in parameters specific for osteoblasts whereas mice lacking Cry22/2 displayed changes in osteoclast specific
parameters. Interestingly, inactivation of both Per2 and Cry2 genes leads to normal bone volume as observed in wild type
animals. Importantly, osteoclast parameters affected due to the lack of Cry2, remained at the level seen in the Cry22/2

mutants despite the simultaneous inactivation of Per2.

Conclusions/Significance: This indicates that Cry2 and Per2 affect distinct pathways in the regulation of bone volume with
Cry2 influencing mostly the osteoclastic cellular component of bone and Per2 acting on osteoblast parameters.
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Introduction

Many biochemical, physiological, and behavioral processes

display daily rhythms generated by an internal timekeeping

mechanism called the circadian clock. The core oscillator driving

this clock is located in the ventral part of the hypothalamus, the

suprachiasmatic nuclei (SCN). At the molecular level, this

oscillator is thought to be composed of interlocking auto regulatory

feedback loops, the transcription/translation feedback loop

(TTFL) involving a set of clock genes [1], although other models

of how the clock works are increasingly discussed [2,3]. Among the

components driving the mammalian circadian clock are the Period

1 and 2 (Per1 and Per2) and Cryptochrome 1 and 2 (Cry1 and Cry2)

genes. A mutation in the mouse Per2 gene (mPer2) gene causes a

gradual loss of circadian rhythmicity in mice kept in constant

darkness (DD; [4] whereas the silencing of mCry2 leads to

immediate arrhythmicity in locomotion behavior [5]. CRY

proteins are part of the negative limb in the transcriptional/

translational feedback loop, whereas PER2 is thought to act

positively on Bmal1 expression [6,7]. Many findings implicated a

regulatory effect of CRY proteins on PER2 which was shown in

crossed double mutant mice for the Cry2 deletion being able to

compensate at least some of the Per2-related circadian clock

defects in Per2Brdm1/Cry22/2 double mutants [8]. The proposed

functional antagonism of Per2 and Cry2 does not suggest a direct

effect of these proteins on each other but that separate sets of genes

and functions are affected when Per2 or Cry2 are deleted. Similar

effects have been seen before on circadian locomotor behaviour

and light-induced phase shift parameters [8].

Studies on the circadian variation of large portions of the

genome have been done in bone marrow derived mesenchymal

cells and osteoblasts [9–11] leading to the proposal that clock

genes may be involved in complex processes like bone formation

[12].

Beside its fundamental role in circadian physiology Per2 is

involved in regulation of the cell cycle [13], vascular endothelial

function [14], addiction behavior [15], food anticipation [16],

mood regulation [17], muscle strength [18], LPS-induced
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interferon gamma production in NK cells [19] and bone density

[20]. It appears that expression of Per genes in osteoblasts

negatively regulates osteoblast proliferation thereby modulating

leptin-regulated bone formation [20]. Since expression of most

clock genes oscillates in bone we investigated bone volume in mice

mutant in clock genes. In particular we were interested in the

impact of the Per2 and Cry2 genes on bone parameters in single

and double mutant female mice and provide genetic evidence for a

role of Cry2 in osteoclast physiology.

Results

Bone volume is increased in 3, 12 and 48 week old
Per2Brdm1 mice but normal at 24 weeks

To determine the optimal age to investigate clock gene

mediated bone phenotypes we tested bone volume at various ages

in Per2Brdm1 mice and compared them with wild type littermates.

We found that Per2Brdm1 animals show an age-dependent bone

volume phenotype in both lumbar vertebrae and tibiae (Figure 1).

At 3, 12 and 48 weeks of age bone density was increased in

vertebral spine, but was, as shown before, statistically indistin-

guishable from wild type at 24 weeks of age ([12]; Figure 1B). Only

the 12 week old females had significantly higher tibial bone

volume (Figure 1D).

In this study we chose 12 week old mice to minimize influence

of the bone deteriorating processes occurring with ageing due to

reduced oestrogen levels. At this age we also observed the largest

difference between wild type and Per2Brdm1 animals (Figure 1) with

a mean mineralized area in lumbar vertebrae (bone volume

divided by total volume = BV/TV) of 10.961.9% for wild type

and 18.562.8% for Per2Brdm1 mice (p#0.001; mean6SD). The

increased volume in Per2Brdm1 mice involved both cortical and

spongiosal structures and was not only present in female, but also

in male animals (Figure S3). These findings indicate that Per2

deficiency leads to overall increased bone volume with age-

dependency in female mice.

Bone formation rate is increased in Per2Brdm1 mice
To determine the origin of the increased bone mineralization in

Per2Brdm1 mice, we next investigated various indicators for

osteoblastic or osteoclastic involvement in the constitution of the

observed bone phenotypes. We found that the number of

osteoblasts and osteoclasts per bone perimeter was not different

between wild type and Per2Brdm1 mutant animals (Figure 2A and B,

respectively). In line with this finding was the observation that the

serum concentrations of the circulating osteoclast activity marker

TRAP5b [21,22] as well as the osteoblast activity marker

osteocalcin did not differ between wild type and Per2Brdm1 animals

(Figure 2C and D, respectively). Neither conventional curve nor

cosinor analysis showed any statistically significant difference in

the mesor, acrophase or amplitude of the serum osteocalcin

Figure 1. Mineralized bone area in vertebrate spine and tibia and age-dependent differences in bone mineral density in Per2Brdm1

mutant mice. (A) Representative examples of photomicrographs of the mineralized bone area in lumbar vertebrae of 3, 12, 24 and 48 week old
Per2Brdm1 mutant mice and their wild type littermates. Black areas represent calcified extracellular matrix, as visualized by Von Kossa staining. (B)
Quantitative analysis of BV/TV (bone volume as a ratio of tissue volume) values of lumbar vertebrae for the different age groups. Shown are the
means (in percent) 6SD (* = p,0.05, ** = p,0.01, *** = p,0.001, ANOVA with Bonferroni post-test). Note that the significant differences at 3, 12 and
48 weeks of age is absent in the 24 week age group. (C) Representative examples of photomicrographs of the mineralized bone area in tibiae of 3, 12,
24 and 48 week old female wild type and Per2Brdm1 mutant mice. Black areas represent calcified extracellular matrix, as visualized by Von Kossa
staining. (D) Quantitative analysis of BV/TV values of tibiae for the different age groups. Shown are the means6SD (* = p,0.05, ** = p,0.01,
*** = p,0.001, ANOVA with Bonferroni post-test).
doi:10.1371/journal.pone.0011527.g001
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profiles (Figure S1). However, the bone formation rate (BFR),

which is mainly influenced by osteoblasts, was significantly higher

in Per2Brdm1 mice as compared to wild type littermates (p#0.01;

Figure 2E). These findings suggest that other factors regulating

osteoblast activity may be altered in Per2Brdm1 mutant mice. In this

context we observed that osteoblasts from Per2Brdm1 mutant mice

exerted a significantly higher ability to form bone nodules after 14

days in culture (Figure S5).

Osteoblast markers are not changed in Cry22/2 mice
Similar to Per2Brdm1, also Cry22/2 mice displayed a mean

vertebral spine density (BV/TV) of 21.661.5% (mean6SD) in

comparison to wild type (10.961.9%; Figure 3A). The tibiae of

Cry22/2 mice displayed also a significantly higher bone volume

(Figure S4). In order to find a cellular basis of the Cry2 defect, we

investigated the same parameters as described above for the Per2-

deficient animals. We found that both the number of osteoblasts

and the number of osteoclasts per bone perimeter was not different

between wild type and Cry22/2 mutant animals (Figure 3A and B,

respectively). Also, bone formation rate and the levels of the

osteoblast activity marker osteocalcin in serum did not differ

between wild type and Cry22/2 (ANOVA with Bonferroni post-

test; Figure 3C, D, respectively). However, in contrast to Per2Brdm1

mutant mice, the serum levels of the circulating osteoclast activity

marker TRAP5b [21,22] were significantly lowered at any time

point in Cry22/2 animals as compared to wild type mice

Figure 2. Osteoblast, osteoclast and serum parameters in Per2Brdm1 mutant mice. (A) Osteoblast number per bone perimeter (Ob.N./B.pm)
in 12 week old wild type and Per2Brdm1 mutant female mice. The number of osteoblasts per bone perimeter is not significantly different between wild
type and Per2Brdm1 mice. (B) Osteoclast number per bone perimeter (Oc.N./B.pm) in 12 week old wild type and Per2Brdm1 mutant female mice. The
number of osteoclasts per bone perimeter is not significantly different between wild type and Per2Brdm1 mice. (C) Serum levels of the circulating
osteoclast marker TRAP5b in female wild type and Per2Brdm1 mice. (D) Serum levels of the osteoblast activity marker osteocalcin in female wild type
and Per2Brdm1 mice. (E) Bone formation rate (BFR) (mm3/mm2/day)) in female wild type and Per2Brdm1 mice. Shown are the means6SD (panel A, B, E) or
SEM (panel C and D) (* = p,0.05, ** = p,0.01, *** = p,0.001, ANOVA with Bonferroni post-test).
doi:10.1371/journal.pone.0011527.g002
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(p#0.001; ANOVA with Bonferroni post-test; Figure 3E). This

indicates reduced osteoclast activity and hence lower bone

resorption in Cry22/2 mice and correlates with our observation

that these animals show higher bone volume. These findings

strongly suggest that the bone phenotype of the Cry2-deficient

female animals is based on lowered osteoclast activity and hence is

mechanistically different from the bone phenotype observed in

Per2Brdm1 mutant animals.

Phenotypic compensation in Per2Brdm1/Cry22/2 mice
The two apparently mechanistically different bone phenotypes

in Per2- or Cry2-deficient female mice and the previously described

non-allelic compensation of the different chrono-phenotypes that

these animals display [8] lead us to investigate bone parameters in

the Per2Brdm1/Cry22/2 double mutant mice.

In these animals bone volume in vertebrae (BV/

TV = 12.462.4%) was indistinguishable from wild type (BV/

TV = 10.961.9%; Figure 4A). Also tibial bone volume was not

different between wildtype and Per2Brdm1/Cry22/2 double mutant

mice (Figure S4). The number of osteoblasts per bone perimeter

was significantly lower in double mutant mice (p,0.05; ANOVA

with Bonferroni post-test; Figure 4B). Interestingly, the osteoclast

number per bone perimeter was normal (Figure 4C) and

comparable to Cry22/2 mice (Figure 3B). These findings correlate

well with the reduced bone formation rate (BFR) observed in

double mutant mice, as compared to wild type controls (p,0.01;

Figure 3. Osteoblast, osteoclast and serum parameters in Cry22/2 mice. (A) Osteoblast number per bone perimeter (Ob.N./B.pm) in 12 week
old wild type and Cry22/2 mutant mice. (B) Osteoclast number per bone perimeter (Oc.N./B.pm) in 12 week old female wild type and Cry22/2 mutant
mice (C) Bone formation rate (BFR) (mm3/mm2/day) in female Cry22/2 mutant mice and wild type controls. (D) Serum levels of the osteoblast activity
marker osteocalcin in female wild type or Cry22/2 mutant mice. (E) Serum levels of the circulating osteoclast marker TRAP5b in 12 week old wild type
and Cry22/2 mutant mice. Shown are the means6SD (panel A–C) or SEM (panel D,E) (* = p,0.05, ** = p,0.01, *** = p,0.001, ANOVA with Bonferroni
post-test).
doi:10.1371/journal.pone.0011527.g003
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Figure 4. Osteoblast, osteoclast and serum parameters in Per2Brdm1/Cry22/2 double mutant mice. A) Representative images of lumbar
vertebral spine from 12 week old female Per2Brdm, Cry22/2, and Per2Brdm1/Cry22/2 mice. B) Osteoblast number per bone perimeter (Ob.N./
B.pm) in 12 week old female wild type and Per2Brdm1/Cry22/2 double mutant mice. C) Osteoclast number per bone perimeter (Oc.N./B.pm) in 12
week old wild type and Per2Brdm1/Cry22/2 double mutant mice. D) Bone formation rate (BFR) (mm3/mm2/day) in 12 week old female wild type and
Per2Brdm1/Cry22/2 double mutant mice. E) Serum levels of the osteoblast activity marker osteocalcin in wild type and Per2Brdm1/Cry22/2 double
mutant animals. F) Serum levels of the circulating osteoclast marker TRAP5b in wild type and Per2Brdm1/Cry22/2 double mutant mice. G) Wheel
running activity (total number of wheel rotations evaluated over 5 days under 12:12 LD) of male wild type, Per2Brdm1, Cry22/2 and Per2Brdm1/
Cry22/2 mice. Shown are the means + SD (* = p,0.05, ** = p,0.01, ANOVA with Bonferroni post-test).
doi:10.1371/journal.pone.0011527.g004
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ANOVA with Bonferroni post-test; Figure 4D). Osteocalcin levels

indicate normal activity of these osteoblasts (Figure 4E). However,

similar to the Cry22/2 mutants, the circulating osteoclast activity

marker TRAP5b was significantly lowered in plasma of double

mutant mice at all times (Figure 4F), suggesting lowered osteoclast-

dependent bone degradation. It appears that Per2 affects the

osteoblastic parameter bone formation (anabolic process), whereas

Cry2 influences osteoclast activity (catabolic process). Hence, the

two clock genes affect bone mineral density in an opposite manner.

Mechanical load is normal in Per2Brdm1, Cry22/2 and
Per2Brdm1/Cry22/2 mice

An important parameter influencing bone strength and density

is mechanical load. Under constant conditions wheel running

activity of all four investigated genotypes was equal (Figure 4F).

Moreover, under light/dark conditions Per2Brdm1 and Cry22/2

mice were as active as wild type and double mutant animals.

Another possible influence may be different body weight between

the genotypes. Although Per2Brdm1 are slightly heavier than wild

type littermates in the first few months of age, they are not

different at older age [23,24]. The body weight of the Cry22/2

mice did not differ from wildtype. Since Per2Brdm1/Cry22/2 mice

are also slightly heavier than wild type in the same time period as

the Per2Brdm1 mutants it is unlikely that weight is the reason for the

observed differences in bone density between genotypes.

Discussion

Per2Brdm1/Cry22/2 double mutants display wild type bone

volume suggesting that Cry2 can act as a non-allelic suppressor

of Per2 in bone formation. However, Per2Brdm1 animals display

increased bone formation and Cry22/2 mice decreased bone

resorption. Therefore, we expected to find a ‘‘super-dense-bone’’

phenotype in the double mutant animals, which is in contrast to

what we observed. How can increased bone formation and

reduced bone resorption combine to a seemingly normal bone?

The answer could lie in the central regulation of bone remodelling

that is determined by both afferent and efferent signalling through

the hypothalamus.

It has been described that the leptin signal originating in

peripheral adipocytes is processed in the hypothalamus from

where mediators including neuropeptide Y (NPY) and neurome-

din U (NMU) affect osteoblast and osteoclast function [25]. This

hypothesis is bolstered by the observation that NMU affects bone

remodelling [26]. We observed higher NMU-precursor levels in

Per2Brdm1 mutant mice in comparison to wildtype littermates at

ZT04 (four hours after lights on; Figure S6). Alterations in NMU

levels support the view that hypothalamic mechanisms are

responsible for the rescue of the bone phenotype in Per2Brdm1/

Cry22/2 double mutant mice. For NMU both systemic [25,26]

and direct cellular [27] influence on osteoblast parameters has

been shown making NMU a potential candidate for the mediation

of Per2 effects on bone mineral density. However, whether

neuromedin U affects bone formation on the local cellular, the

systemic hypothalamic, or both levels, is unclear [25–27]. We also

observed elevated parathyroid hormone (PTH) levels in the serum

of Per2Brdm1 mutant mice at ZT 04 (Figure S7). Finally, osteoblasts

cultivated from Per2-luciferase reporter gene mice displayed

autonomous circadian oscillation without any input from the

central nervous system (Figure S2)[28]. Autonomous circadian

cycling of various mesenchymal stem cells from different sources

and osteoblasts has been described before [9,11,29,30] and has

been recently reviewed [12]. Taking all these findings together it is

highly probable that both local bone regulatory processes in the

osteoblasts and osteoclasts and the central oscillator in the SCN

contribute to bone formation and bone volume regulation.

Another interesting finding is that the Cry22/2 phenotype

appears to be mostly unaffected by the functional Per2-deficit of

the Per2Brdm1 mutants. In both the single Cry22/2 and the double

mutant Per2Brdm1/Cry22/2 animals circulating TRAP5b levels are

significantly reduced. It has been shown that Cry2 deficiency leads

to downregulation of NFkB-RelA [31]. NFkB -RelA promotes

osteoclast differentiation by blocking a RANKL- induced JNK

pathway [32]. Therefore NFkB -RelA deficiency should lead to

lower osteoclastic activity which is in line with our observations

and might possibly explain the bone resorption phenotype of both

the Cry22/2 and Per2Brdm1/Cry22/2 deficient mice. However, both

osteoblast number and bone formation rate are reduced in the

Per2Brdm1/Cry22/2 double mutant animals, but unaffected (osteo-

blast number) and increased (bone formation rate) in the single

mutant Per2Brdm1. Thus the Cry 22/2 bone phenotype persists

irrespectively of the simultaneous absence of the Per2 gene. This

parallels the finding, that there is no obligatory cross-regulation

between bone formation and bone resorption [33–35]. Whereas

Cry2 exerts its effects on the osteoclasts no matter if Per2 is present

or not, the osteoblastic effects of Per2 appear to be Cry2-

dependent, since in the absence of Cry2 both bone formation rate

and osteoblast number are significantly lowered whereas in the

presence of Cry2, the Per2Brdm1 mutant mouse bone formation rate

was higher than in wildtype littermates. The mechanistic basis for

this observation is unclear, but the data speaks for a non-

redundancy of the Cry (Cry1 cannot compensate for the absence

of Cry2) genes at least for the bone phenotype.

The model that emerged from earlier studies highlighted a role

of clock genes (Per1 and Per2) in the leptin-dependent modulation

of osteoblast proliferation. Here we extend these findings and

report that the action of clock genes in bone remodelling is not

limited to osteoblasts, but also involves osteoclast regulation.

Taken together, our findings illustrate that molecular compo-

nents of the circadian clock mechanism play a critical role in the

anabolic and catabolic mechanisms of bone volume regulation.

These functions of the clock genes Per2 and Cry2 may not depend

on circadian regulation phenomena since the observed bone

phenotypes occur under diurnal (light dark) conditions. In

particular it appears that Per2 and Cry2 have opposite effects on

bone metabolism via unknown mechanisms regulating osteoblasts

and osteoclasts, respectively. Future studies will show whether

specific pharmaceutical targeting of Cry2 or Per2 can serve as a

new therapeutic avenue to treat bone loss conditions such as

osteoporosis.

Materials and Methods

Mice
The Per2Brdm1, Cry22/2, and Per2 Brdm1/Cry22/2 mice and wild

type littermates (all in a hybrid 129Sv/C57BL6 genetic back-

ground) used for this study have been described previously [4,5,8].

All animal experiments were approved by the Animal Care

Facilities of the Hamburg, Frankfurt and Fribourg Universities

and performed according to the Declaration of Helsinki. Mice

were fed a standard rodent diet and housed in a regular (12 h

light/12 h dark) light/dark cycle (12/12LD). The bone phenotype

was analyzed at the ages of 3, 12, 24 and 48 weeks. Given the

absence of significant sex differences (data not shown), only data

from female mice are presented in this manuscript. To assess

dynamic histomorphometric indices, mice were given two

injections of calcein green 9 and 2 days before animals were

sacrificed. At least five mice per group were subjected to
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histomorphometry and serum analysis to obtain statistically

significant results. For the quantification of bone development a

total of 80 (20 per age class) female mice of the clock gene mutant

animals or wild type controls were screened by radiography.

Histomorphometry
Skeletons were fixed in 3.7% PBS-buffered formaldehyde for

18 h at 4uC. After 24-h incubation in 70% ethanol, the lumbar

vertebral bodies (L3–L5) and one tibia of each mouse were

dehydrated in ascending alcohol concentrations and embedded in

methylmethacrylate as described previously [36,37]. Sections of

5 mm were cut in the sagittal plane on a Microtec rotation

microtome (Techno-Med, Munich, Germany). These sections

were stained by the van Gieson/von Kossa procedure as described

[36]. Nonstained sections of 12 mm were used to determine the

bone formation rate (BFR in mm3/mm2/day).

Parameters of static and dynamic histomorphometry were

quantified on toluidine blue–stained undecalcified proximal tibia

and lumbar vertebral sections of 5 mm. Analysis of bone volume,

trabecular number, trabecular spacing, trabecular thickness, and

the determination of osteoblast and osteoclast numbers and surface

were carried out according to standardized protocols using the

Osteo-Measure histomorphometry system (Osteometrics, Atlanta,

GA, USA) [37]. Fluorochrome measurements for the determination

of bone formation rate were performed on two nonconsecutive 12-

mm sections for each animal. Statistical differences between the

groups (n$5) were assessed by ANOVA with subsequent

Bonferroni post test using p#0.05 as the criterion for significance.

Biochemical assays
Blood was taken from the same mice 4 times every 6 hours (at

Zeitgeber time 0/24, 06, 12 and 18; Zeitgeber time 0 is defined as

the start of the light period) retro-orbitally. Serum was produced

from retro-orbital blood as described before [38]. Serum

concentrations of hormones were quantified using antibody-based

detection kits (Osteocalcin, from Immutopics, Los Angeles, CA,

USA; TRAP5b from IDS, UK).

Statistical analysis
Data were analysed by GraphPad prism 3.0. Group comparison

was done by Stdents t-test, curve comparison by ANOVA with

Bonferroni post-test. Possible differences betewwn the genotypes

over the course of the day, namely mesor, amplitude and

acrophase changes in the osteocalcin and TRAP5b-levels were

analyzed by COSINOR analysis as implemented in the MathLab

software.

Supporting Information

Figure S1 Data on osteocalcin levels at different times (ZT00,

ZT06, ZT12 and ZT18) in serum of wildtype, Per2Brdm1, Cry22/2,

and Per2Brdm1/Cry22/2 mice were subjected to COSINOR

analysis. There was no statistical difference in the mesor,

acrophase or amplitude of the osteocalcin profiles.

Found at: doi:10.1371/journal.pone.0011527.s001 (0.12 MB

PDF)

Figure S2 Calvarial osteoblasts from newborn Period2-promot-

er-luciferase transgenic (mPer2-luc) mice were prepared as

described by Kramer et al (2008). The experiment was started

by adding fresh medium containing D-luciferin (100 mM) and

relative light emission (RLU) was recorded for 68 hours. The

cultured osteoblasts oscillate with a approximately 24 hour period.

Found at: doi:10.1371/journal.pone.0011527.s002 (0.01 MB

PDF)

Figure S3 The vertebrae of male mice were prepared as

described in Materials and Methods of the main text. The BV/

TV-value of the 12 week old male Per2Brdm1 was significantly

higher than that of wildtype littermates (p#0.05, Student’s t-test).

Found at: doi:10.1371/journal.pone.0011527.s003 (0.00 MB

PDF)

Figure S4 The tibiae of female mice were prepared as described

in Materials and Methods of the main text. The BV/TV-value of

the 12 week old female Cry22/2 mice was significantly higher than

that of wildtype littermates (p#0.01, ANOVA with Bonferroni

post-test). Wildtype and Per2Brdm1/Cry22/2 mice were not

statistically different.

Found at: doi:10.1371/journal.pone.0011527.s004 (0.00 MB

PDF)

Figure S5 Primary osteoblasts were obtained by sequential

collagenase digestion of calvariae from 3-day-old mice. Osteoblast

differentiation was induced at 80% confluency in a-MEM

containing 10% FBS, 50 mg/ml ascorbic acid, and 10 mM b-

glycerophosphate. Analysis of ECM mineralization was deter-

mined by Von Kossa staining as described [4] and reveals an

accelerated mineralization of Per2Brdm1 derived primary osteoblast

cultures compared with wild-type cultures (p#0.001, Student’s t-

test).

Found at: doi:10.1371/journal.pone.0011527.s005 (0.00 MB

PDF)

Figure S6 Neuromedin U (NMU) precursor levels in plasma at

ZT04 (four hours after lights on) were determined by SDS-PAGE

and Western blotting using affinity-purified rabbit anti-mouse

NMU antiserum (1:1000; Alpha Diagnostics, San Antonio, TX,

USA). NMU precursor levels were significantly higher in plasma

from Per2Brdm1 compared to wildtype (p#0.001, Student’s t-test).

Found at: doi:10.1371/journal.pone.0011527.s006 (0.00 MB

PDF)

Figure S7 Intact parathyroid hormone (iPTH) levels in plasma

at ZT04 (four hours after lights on) were determined by the mouse

intact PTH ELISA kit (Immutopics, San Clemente, CA, USA).

Intact PTH levels were significantly higher in plasma from

Per2Brdm1 compared to wildtype (p#0.01, Student’s t-test).

Found at: doi:10.1371/journal.pone.0011527.s007 (0.00 MB

PDF)

Acknowledgments

We would like to thank Drs. Wolf-Georg Forssmann and Jörg Stehle for

support, Dr. Aleksandra Heitland and Antoinette Hayoz for technical

assistance and Alexander H. Benz for help with the figures.

Author Contributions

Conceived and designed the experiments: EM AFS TS MA UA.

Performed the experiments: EM AFS SS IS. Analyzed the data: EM

AFS SS TS MA UA. Contributed reagents/materials/analysis tools: IS

GvdH. Wrote the paper: EM UA.

References

1. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals.

Nature 418: 935–41. doi:10.1038/nature00965.

2. Merrow M, Roenneberg T (2007) Circadian clock: time for a phase shift of

ideas? Curr Biol 17: R636–8. doi:10.1016/j.cub.2007.06.041.

Per2 and Cry2 Effects on Bone

PLoS ONE | www.plosone.org 7 July 2010 | Volume 5 | Issue 7 | e11527



3. Hastings MH, Maywood ES, O’Neill JS (2008) Cellular circadian pacemaking

and the role of cytosolic rhythms. Curr Biol 18: R805–R815. doi:10.1016/
j.cub.2008.07.021.

4. Zheng B, Larkin DW, Albrecht U, Sun ZS, Sage M, et al. (1999) The mPer2

gene encodes a functional component of the mammalian circadian clock. Nature
400: 169–73. doi:10.1038/22118.

5. van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, et al. (1999)
Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms.

Nature 398: 627–630. doi:10.1038/19323.

6. Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, et al. (2000)
Interacting molecular loops in the mammalian circadian clock. Science 288:

1013–1019.
7. Albrecht U, Bordon A, Schmutz I, Ripperger J (2007) The multiple facets of

Per2. Cold Spring Harb Symp Quant Biol 72: 95–104. doi:10.1101/
sqb.2007.72.001.

8. Oster H, Yasui A, van der Horst GTJ, Albrecht U (2002) Disruption of mCry2

restores circadian rhythmicity in mPer2 mutant mice. Genes Dev 16: 2633–8.
doi:10.1101/gad.233702.

9. Zvonic S, Ptitsyn AA, Kilroy G, Wu X, Conrad SA, et al. (2007) Circadian
oscillation of gene expression in murine calvarial bone. J Bone Miner Res 22:

357–365. doi:10.1359/jbmr.061114.

10. Wu X, Yu G, Parks H, Hebert T, Goh BC, et al. (2008) Circadian mechanisms
in murine and human bone marrow mesenchymal stem cells following

dexamethasone exposure. Bone 42: 861–870. doi:10.1016/j.bone.2007.12.226.
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