184 research outputs found

    Time-Resolved Measurements and Master Equation Modelling of the Unimolecular Decomposition of CH3OCH2

    Get PDF
    The rate coefficient for the unimolecular decomposition of CH3OCH2,k(1), has been measured in time-resolved experiments by monitoring the HCHO product. CH3OCH2 was rapidly and cleanly generated by 248 nm excimer photolysis of oxalyl chloride, (ClCO)(2), in an excess of CH3OCH3, and an excimer pumped dye laser tuned to 353.16 nm was used to probe HCHO via laser induced fluorescence. k(1)(T,p) was measured over the ranges: 573-673 K and 0.1-4.3 x 10(18) molecule cm(-3) with a helium bath gas. In addition, some experiments were carried out with nitrogen as the bath gas. Ab initio calculations on CH3OCH2 decomposition were carried out and a transition-state for decomposition to CH3 and H2CO was identified. This information was used in a master equation rate calculation, using the MESMER code, where the zero-point-energy corrected barrier to reaction, Delta E-0,E-1, and the energy transfer parameters, x T-n, were the adjusted parameters to best fit the experimental data, with helium as the buffer gas. The data were combined with earlier measurements by Loucks and Laidler (Can J. Chem. 1967, 45, 2767), with dimethyl ether as the third body, reinterpreted using current literature for the rate coefficient for recombination of CH3OCH2. This analysis returned Delta E-0,E-1 = (112.3 +/- 0.6) kJ mol(-1), and leads to k(1)(infinity)(T) = 2.9 x 10(12) (T/300)(2)(.5) exp(-106.8 kJ mol(-1)/RT). Using this model, limited experiments with nitrogen as the bath gas allowed N-2 energy transfer parameters to be identified and then further MESMER simulations were carried out, where N-2 was the buffer gas, to generate k(1)(T,p) over a wide range of conditions: 300-1000 K and N-2 = 10(12) -10(25) molecule cm(-3). The resulting k(1)(T,p) has been parameterized using a Troe-expression, so that they can be readily be incorporated into combustion models. In addition, k(1)(T,p) has been parametrized using PLOG for the buffer gases, He, CH3OCH3 and N-2.Peer reviewe

    Uncertainty of the rate parameters of several important elementary reactions of the H2 and syngas combustion systems

    Get PDF
    Abstract Re-evaluation of the temperature-dependent uncertainty parameter f(T) of elementary reactions is proposed by considering all available direct measurements and theoretical calculations. A procedure is presented for making f(T) consistent with the form of the recommended Arrhenius expression. The corresponding uncertainty domain of the transformed Arrhenius parameters (ln A, n, E/R) is convex and centrally symmetric around the mean parameter set. The f(T) function can be stored efficiently using the covariance matrix of the transformed Arrhenius parameters. The calculation of the uncertainty of a backward rate coefficient from the uncertainty of the forward rate coefficient and thermodynamic data is discussed. For many rate coefficients, a large number of experimental and theoretical determinations are available, and a normal distribution can be assumed for the uncertainty of ln k. If little information is available for the rate coefficient, equal probability of the transformed Arrhenius parameters within their domain of uncertainty (i.e. uniform distribution) can be assumed. Algorithms are provided for sampling the transformed Arrhenius parameters with either normal or uniform distributions. A suite of computer codes is presented that allows the straightforward application of these methods. For 22 important elementary reactions of the H2 and syngas (wet CO) combustion systems, the Arrhenius parameters and 3rd body collision efficiencies were collected from experimental, theoretical and review publications. For each elementary reaction, kmin and kmax limits were determined at several temperatures within a defined range of temperature. These rate coefficient limits were used to obtain a consistent uncertainty function f(T) and to calculate the covariance matrix of the transformed Arrhenius parameters

    OH yields from the CH3CO+O-2 reaction using an internal standard

    Get PDF
    Laser flash photolysis of CH3C(O)OH at 248 nm was used to create equal zero time yields of CH3CO and OH. The absolute OH yield from the CH3CO + O2 (+M) reaction was determined by following the OH temporal profile using the zero time OH concentration as an internal standard. The OH yield from CH3CO + O2 (+M) was observed to decrease with increasing pressure with an extrapolated zero pressure yield close to unity (1.1 ± 0.2, quoted uncertainties correspond to 95% confidence limits). The results are in quantitative agreement with those obtained from 248 nm acetone photolysis in the presence of O2

    Coaxial Dielectric Spectroscopy as an In-Line Process Analytical Technique for Reaction Monitoring

    Get PDF
    The suitability of broadband dielectric spectroscopy (DS) as a tool for in-line (in situ) reaction monitoring is demonstrated. Using the esterification of 4-nitrophenol as a test-case, we show that multivariate analysis of time-resolved DS data-collected across a wide frequency range with a coaxial dip-probe-allows reaction progress to be measured with both high precision and high accuracy. In addition to the workflows for data collection and analysis, we also establish a convenient method for rapidly assessing the applicability of DS to previously untested reactions or processes. We envisage that, given its orthogonality to other spectroscopic methods, its low cost, and its ease of implementation, DS will be a valuable addition to the process chemist's analytical toolbox

    The Passive Journalist: How sources dominate the local news

    Get PDF
    This study explores which sources are “making” local news and whether these sources are simply indicating the type of news that appears, or are shaping newspaper coverage. It provides an empirical record of the extent to which sources are able to dominate news coverage from which future trends in local journalism can be measured. The type and number of sources used in 2979 sampled news stories in four West Yorkshire papers, representing the three main proprietors of local newspapers in the United Kingdom, were recorded for one month and revealed the relatively narrow range of routine sources; 76 per cent of articles cited only a single source. The analysis indicates that journalists are relying less on their readers for news, and that stories of little consequence are being elevated to significant positions, or are filling news pages at the expense of more important stories. Additionally, the reliance on a single source means that alternative views and perspectives relevant to the readership are being overlooked. Journalists are becoming more passive, mere processors of one-sided information or bland copy dictated by sources. These trends indicate poor journalistic standards and may be exacerbating declining local newspaper sales

    AtChem (version 1), an open-source box model for the Master Chemical Mechanism

    Get PDF
    AtChem is an open-source zero-dimensional box model for atmospheric chemistry. Any general set of chemical reactions can be used with AtChem, but the model was designed specifically for use with the Master Chemical Mechanism (MCM, http://mcm.york.ac.uk/, last access: 16 January 2020). AtChem was initially developed within the EUROCHAMP project as a web application (AtChem-online, https://atchem.leeds.ac.uk/webapp/, last access: 16 January 2020) for modelling environmental chamber experiments; it was recently upgraded and further developed into a stand-alone offline version (AtChem2), which allows the user to run complex and long simulations, such as those needed for modelling of intensive field campaigns, as well as to perform batch model runs for sensitivity studies. AtChem is installed, set up and configured using semi-automated scripts and simple text configuration files, making it easy to use even for inexperienced users. A key feature of AtChem is that it can easily be constrained to observational data which may have different timescales, thus retaining all the information contained in the observations. Implementation of a continuous integration workflow, coupled with a comprehensive suite of tests and version control software, makes the AtChem code base robust, reliable and traceable. The AtChem2 code and documentation are available at https://github.com/AtChem/ (last access: 16 January 2020) under the open-source MIT License

    Reanalysis of Rate Data for the Reaction CH<sub>3</sub> + CH<sub>3</sub> → C<sub>2</sub>H<sub>6</sub> Using Revised Cross Sections and a Linearized Second-Order Master Equation

    Get PDF
    Rate coefficients for the CH3 + CH3 reaction, over the temperature range 300-900 K, have been corrected for errors in the absorption coefficients used in the original publication ( Slagle et al., J. Phys. Chem. 1988 , 92 , 2455 - 2462 ). These corrections necessitated the development of a detailed model of the B̃(2)A1' (3s)-X̃(2)A2″ transition in CH3 and its validation against both low temperature and high temperature experimental absorption cross sections. A master equation (ME) model was developed, using a local linearization of the second-order decay, which allows the use of standard matrix diagonalization methods for the determination of the rate coefficients for CH3 + CH3. The ME model utilized inverse Laplace transformation to link the microcanonical rate constants for dissociation of C2H6 to the limiting high pressure rate coefficient for association, k∞(T); it was used to fit the experimental rate coefficients using the Levenberg-Marquardt algorithm to minimize χ(2) calculated from the differences between experimental and calculated rate coefficients. Parameters for both k∞(T) and for energy transfer ⟨ΔE⟩down(T) were varied and optimized in the fitting procedure. A wide range of experimental data were fitted, covering the temperature range 300-2000 K. A high pressure limit of k∞(T) = 5.76 × 10(-11)(T/298 K)(-0.34) cm(3) molecule(-1) s(-1) was obtained, which agrees well with the best available theoretical expression

    Effectiveness of primary care psychological therapy services for the treatment of depression and anxiety in people living with dementia: Evidence from national healthcare records in England

    Get PDF
    BACKGROUND: Depression and anxiety are common and deleterious in people living with dementia (PLWD). It is currently unknown whether routinely provided psychological therapy can help reduce these symptoms in PLWD. This study aimed to investigate improvements in depression and anxiety symptoms over the course of therapy offered in primary care psychological therapy services in PLWD and to compare outcomes to people without dementia. METHODS: National data from Improving Access to Psychological Therapies services (IAPT) across England linked with Hospital Episode Statistics data, the Mental Health Services Dataset, and HES-ONS mortality data were used to identify 1,549 PLWD who completed a course of psychological treatment in IAPT between 2012-2019 and a propensity score matched control group without identified dementia. Outcome measures included pre-post intervention changes in depression (PHQ-9) and anxiety (GAD-7) symptoms and therapy outcomes (reliable improvement, recovery, deterioration). FINDINGS: Symptoms of depression (t(1548)=31·05, p<·001) and anxiety (t(1548)=30·31, p<·001) improved in PLWD over the course of psychological therapy with large effect sizes (depression: d=-0·83; anxiety: d=-0·80). However, PLWD were less likely to reliably improve (OR=·75, 95%CI[·63,·88], p<·001) or recover (OR=·75, 95%CI[·64,·88], p=·001), and more likely to deteriorate (OR=1·35, 95%CI[1·03,1·78], p=·029) than a matched control sample without dementia. INTERPRETATION: Psychological therapy may be beneficial for PLWD with depression or anxiety, but it is currently not as effective as for people without dementia. More research is needed to improve access to psychological therapies and to understand this discrepancy and how therapies can be adapted to further improve outcomes. FUNDING: This work was supported by the Alzheimer's Society
    corecore