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Abstract 

Re-evaluation of the temperature-dependent uncertainty parameter f(T) of elementary reactions is 

proposed by considering all available direct measurements and theoretical calculations. A 

procedure is presented for making f(T) consistent with the form of the recommended Arrhenius 

expression. The corresponding uncertainty domain of the transformed Arrhenius parameters (ln 

A, n, E/R) is convex and centrally symmetric around the mean parameter set. The f(T) function 

can be stored efficiently using the covariance matrix of the transformed Arrhenius parameters. 

The calculation of the uncertainty of a backward rate coefficient from the uncertainty of the 

forward rate coefficient and thermodynamic data is discussed. For many rate coefficients, a large 

number of experimental and theoretical determinations are available, and a normal distribution 

can be assumed for the uncertainty of ln k. If little information is available for the rate 

coefficient, equal probability of the transformed Arrhenius parameters within their domain of 

uncertainty (i.e. uniform distribution) can be assumed. Algorithms are provided for sampling the 

transformed Arrhenius parameters with either normal or uniform distributions. A suite of 

computer codes is presented that allows the straightforward application of these methods. For 22 

important elementary reactions of the H2 and syngas (wet CO) combustion systems, the 

Arrhenius parameters and 3rd body collision efficiencies were collected from experimental, 

theoretical and review publications. For each elementary reaction, kmin and kmax limits were 

determined at several temperatures within a defined range of temperature. These rate coefficient 

limits were used to obtain a consistent uncertainty function f(T) and to calculate the covariance 

matrix of the transformed Arrhenius parameters. 
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1. Introduction 

 

Chemical kinetics databases for many elementary gas-phase reactions provide the 

recommended values of the Arrhenius parameters, the temperature range of their validity and the 

uncertainty of rate coefficient k defined by uncertainty parameter f. In combustion chemistry, 

kinetic data are available from the NIST Chemical Kinetics Database [1], the evaluations of 

Warnatz [2], Tsang et al. (see e.g. [3-5]), Baulch et al. (see e.g.[6-8]) and the review of Konnov 

[9]. The uncertainty parameter f, which is generally a temperature-dependent value, is defined in 

the following way:  

   0kkkkf max10min
0

10 loglog   (1) 

where k0 is the recommended value of the rate coefficient, kmin and kmax are the extreme, but still 

not excludable, physically realistic values. This definition of the uncertainty is related to the 

limits and does not necessarily have a probabilistic inference. According to this approach, the 

upper and lower extreme values differ from the recommended value by a multiplication factor, 

which means that, on a logarithmic scale, the extreme values are located symmetrically around 

the recommended value. In the combustion data collections and evaluations, the uncertainty 

parameter f is either considered to be temperature independent or it is defined at a few 

temperatures or in a few temperature intervals.  

A detailed probabilistic analysis of the representation of the uncertainty of the rate 

coefficients in the various databases was recently published in refs. [10] and [11]. A method was 

provided for determining the covariance matrix of the transformed Arrhenius parameters (ln A, n, 

E/R) and a continuous uncertainty function f(T) from the uncertainty information given in the 

databases. This covariance matrix allowed the definition of a multivariate normal distribution 

and the determination of the uncertainty domain for the transformed Arrhenius parameters [10]. 

This question is investigated in a wider scope here, considering also the re-evaluation of the 

uncertainty parameter f, and the case when little information is available for the rate coefficient. 

Evaluation of the uncertainty domain of the Arrhenius parameters is very important for the 

following reasons. 

(i) Several chemical kinetics modelling studies use adjusted Arrhenius parameters for a better 

description of the measured data, and frequently it is not obvious if these modified Arrhenius 

parameters are physically realistic. Currently it is not easy to check if a newly recommended set 

of Arrhenius parameters is within its physically realistic domain. 
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(ii) Frenklach et al. (see e.g.[12-14]) and Wang et al. (see e.g.[15-18]) have used systematic 

optimization of reaction mechanisms to improve the agreement with experimental data. In these 

studies, selected Arrhenius A-factors, 3rd body collision efficiencies and enthalpies of formation 

were optimized. Fitting may include the optimization of all Arrhenius parameters [19-23]. 

Application of global optimization methods requires that a physically meaningful uncertainty 

domain of the parameters (prior uncertainty) is determined first. Then, the optimal parameter set 

is looked for within this domain. Optimizing all rate parameters of the important reactions may 

result in a physically more meaningful parameter set than changing the A-factors and 3rd body 

collision efficiencies only. Mechanism optimization results in the posterior stochastic uncertainty 

of the rate parameters, calculated by methods of mathematical statistics. The posterior 

uncertainty of the parameters depends on the uncertainty of the experimental data (or theoretical 

results) used, and the deviation between the data points and the corresponding modelling results 

based on the optimized reaction mechanism [19]. 

(iii) Several articles have dealt with the uncertainty analysis of combustion chemistry models 

[24]. In most of these studies (see e.g. [25-33]) only the uncertainty of the Arrhenius parameter A 

was considered, and it was assumed to be equal to the temperature-independent uncertainty of 

the rate coefficient, characterized by the uncertainty parameter f. Maybe the only exception is the 

recent article of Hébrard et al.  [34], where the uncertainty of the rate coefficient k at 300 K and 

the uncertainty of the temperature dependence of k were considered separately at the uncertainty 

analysis of an n-butane oxidation mechanism. However, Hébrard et al. did not consider the joint 

uncertainty of the Arrhenius parameters. In general, the joint uncertainty of the Arrhenius 

parameters allows a much more realistic uncertainty analysis of a kinetic model. 

The aim of this article is twofold. Firstly, sections 2 to 6 detail the theory of how to obtain the 

prior uncertainty of the Arrhenius parameters of an elementary reaction based on the information 

collected from the chemical kinetics literature. Section 2 discusses the determination of the 

uncertainty domain of the Arrhenius parameters. An uncertainty band of the rate coefficient and 

the corresponding uncertainty parameter values are obtained in regular temperature intervals 

(e.g. at every 100 K) independently each other from the literature kinetic information. These 

uncertainty parameter values are denoted as foriginal(Ti). In the next step, the uncertainty 

parameters are made consistent with the form of the Arrhenius expression, yielding uncertainty 

parameter values fextreme(Ti). It is shown that the parameters of the extreme Arrhenius curves 

define a joint uncertainty domain for the transformed Arrhenius parameters, which is centrally 

symmetric and convex. Section 3 shows that the uncertainty parameter function fextreme(T) can be 

efficiently stored in the form of the covariance matrix of the transformed Arrhenius parameters. 
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The uncertainty parameter function restored from the covariance matrix is denoted fprior(T). 

Section 4 presents how the uncertainty of the reverse rate coefficient can be calculated from the 

uncertainty of the forward rate coefficient and the uncertainty of the thermodynamic data. These 

methods do not require any assumption for the shape of the probability density function of the 

Arrhenius parameters. We discuss in Section 5 how to sample efficiently the transformed 

Arrhenius parameters for parameter optimization or uncertainty analysis applications with either 

normal or uniform distributions, knowing the covariance matrix and the limits of ln k. Section 6 

describes a suite of computer codes related to the procedures above. The Appendix contains the 

mathematical proofs for the statements of Sections 2 to 6. 

The second intention of this article is to review the rate parameters and characterize the 

uncertainty of 22 elementary reactions important in hydrogen and syngas combustion, to be 

detailed in Section 7. The rate parameters for these reaction steps, as given in the recent reviews, 

are listed. A comparison of the parameters of these critical reactions in several recently 

developed hydrogen and syngas combustion mechanisms is provided. Values of the uncertainty 

parameter f that are in accordance with the results of all available direct measurements and 

theoretical calculations for the corresponding reactions are tabulated at several temperatures. The 

covariance matrix of the transformed Arrhenius parameters was determined from the T – f  

tables. For the low-pressure limit rate coefficients, 3rd body collision efficiencies measured in the 

experiments and used in the various modelling studies are reviewed. An uncertainty range is 

suggested for each 3rd body collision efficiency parameter. All collected chemical kinetics 

information for the investigated elementary reactions are given as Supplementary Material. 
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2. Uncertainty domain of the Arrhenius parameters 

 

The rate coefficient of an elementary reaction can be determined by experimental methods. If 

several measurements are carried out in different laboratories (maybe using different methods) at 

similar temperatures, then the uncertainty of the rate coefficient can be well assessed at a given 

temperature or in a narrow temperature interval. If the uncertainty of a rate coefficient is 

determined from literature data independently at different temperatures, then these uncertainties 

can be very different from each other even at nearby temperatures. However, if the measured rate 

coefficients are interrelated by a common Arrhenius expression, then the uncertainties measured 

at different temperatures are also interconnected. Taking into account the temperature 

dependence of the rate coefficient, the uncertainty at a given temperature cannot be high if it is 

low at nearby temperatures. This section discusses the determination of an Arrhenius-equation-

consistent uncertainty function from the uncertainties of a rate coefficient valid at given 

temperatures (or in given temperature intervals) and the features of the corresponding 

uncertainty domain of the Arrhenius parameters. 

 

 

2.1 The uncertainty band of Arrhenius curves 

 

The temperature dependence of rate coefficient k is described by the modified Arrhenius 

equation k=A {T}n exp(E/RT). In accordance with the recommendations [35], curly brackets are 

used to denote the numerical value of the enclosed physical quantity at the predefined units, 

which are cm, K, s, mol in this paper. Introducing transformed parameters (T) := ln{k(T)},  := 

ln{A} and  := E/R, the linearized form of the modified Arrhenius equation is  

    1ln  TTnT   (2) 

In the chemical kinetics literature both the original parameters (A, n, E) and the transformed 

parameters (ln{A}, n, E/R) are referred to as Arrhenius parameters. In this article, term Arrhenius 

parameters is always used for the transformed ones. 

The procedure described here determines the uncertainty domain of Arrhenius parameters 

(p=(α,n,ε)T) from the uncertainty information for the rate coefficients. In several cases the 

temperature dependence of the rate coefficient can be described by two Arrhenius parameters 

(α,ε) or (α,n). In this case the third Arrhenius parameter is set to zero. 
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Assume that a central set of Arrhenius parameters p0 is available and the symmetric 

uncertainty of the rate coefficient is estimated at several temperatures by uncertainty 

parameters )( iTf , i = 1, … , nT. It is possible to generate all Arrhenius curves (T,p) that lie 

between the uncertainty limits, fulfilling the following 2nT inequalities. 

 

 
Ti

ii
i ni       )Tf

TT
)Tf ,...,1(

10ln

);(;
(

0





pp 

 (3) 

 

These curves are located symmetrically around the mean rate coefficient curve );( 0pT , since 

Arrhenius equation (2) is a linear function of parameters α, n, ε and equation (3) defines 

symmetric linear constraints. A systematic procedure is proposed here for determining the 

extreme Arrhenius curves, which touch either the lower or the upper uncertainty limit at least at 

2 or 3 temperatures for the 2- and the 3-parameter cases, respectively, and also go within the 

upper and lower uncertainty limits at all other temperatures. Formally, these criteria correspond 

to Arrhenius functions that fulfil at least 2 or 3 equality relations in equations (3) and for the 

remaining 2nT–2 or 2nT–3 cases, respectively, either the equality or the inequality is fulfilled. 

The minimum and maximum values of these curves at a given temperature define the edges of 

the band of all possible Arrhenius curves.  

In the case of the 3-parameter Arrhenius expression, term nln{T} usually has a smaller 

contribution to the temperature dependence of the rate coefficient than –ε/T, since ln{T} changes 

more slowly than 1/T at combustion temperatures. The effect of a change in the temperature 

exponent n on the rate coefficient at high temperatures can be well compensated by adjusting the 

pre-exponential factor , leading to a very strong anti-correlation between α and n in most 

determinations. This implies that values of n, which significantly deviate (i.e. by ±10) from the 

central n0, can also fulfil all the inequality requirements in equation (3) if the initial uncertainty 

limits are not too tight. Both theoretical considerations [36] and the typical range of values of n 

in kinetic databases [1] show that the temperature exponent n of elementary chemical reactions 

should take values of small negative and positive numbers. Therefore, we recommend confining 

the range of n values to a narrow (i.e. n = 2) symmetric interval around the central value n0 

when the band of possible Arrhenius curves is determined through finding extreme Arrhenius 

curves. 

 

nnnn  0  (4) 
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The extreme Arrhenius curves are those which fulfil at least 2 or 3 equality relations in equations 

(3) and (4) for the two-parameter and the three-parameter cases, respectively. To determine the 

extreme Arrhenius curves, uncertainty values need to be known at least at 2 temperatures, since 

in the three-parameter case a constraint is given for parameter n.  

The procedure is demonstrated on the reaction H2O2+H→H2O+OH of the (α,ε)-type and the 

reaction H+CH3H2+1CH2 of the (α,n,ε)-type; the recommended Arrhenius parameters and 

uncertainty f values are shown in Table 1. The first reaction is evaluated in this work as reaction 

R14 (see Section 7.3), while the data for the second reaction were taken from Baulch et al. [8]. 

Fig. 1 shows the values of the original uncertainty limits and the continuous curve of the new 

uncertainty limits. The original uncertainty limits are shown at every 100 K within the 

temperature range of validity [Tmin,Tmax], leading to 2nT uncertainty limits (see equation 3), 

where nT=[(Tmax–Tmin)/100 K]+1. Due to this discretization a finite number of extreme Arrhenius 

curves can be determined depending on the number of points considered. However, some of 

these curves may coincide. 

 

 

                                      (a)                                                                           (b) 

   

 

Fig. 1. The uncertainty band of Arrhenius curves is determined by drawing all extreme 
Arrhenius curves (black thin solid lines) going between the original uncertainty limits (red dots), 
which are symmetrically located around the mean curve (red thick solid line), and determining 
the extrema of this series of curves (blue dashed lines). Figures 1a and 1b correspond to reactions 
H2O2+H→H2O+OH and H+CH3H2+1CH2.  
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For the (,)-type example reaction H2O2+H→H2O+OH with constant uncertainty, only four 

distinct extreme Arrhenius curves (straight lines in an Arrhenius plot) can be found and the 

corresponding new uncertainty limits coincide with the original uncertainty limits (see Fig. 1a). 

For the (,n,)-type example reaction H+CH3H2+1CH2 with piece-wise constant uncertainty, 

several different extreme Arrhenius curves can be defined using the discretized uncertainty curve 

(see Fig. 1b). Although we assumed n=2 for the maximal allowed deviation of temperature 

exponent n, the nn0 value of the extreme Arrhenius curves was always less than 2 in this case. 

 

 

2.2 Uncertainty parameter function f(T) consistent with the Arrhenius equation 

 

The minimum and maximum values of the extreme Arrhenius curves (min(T) and max(T)) 

define new uncertainty limits, which are symmetrically located around the mean );( 0pT  curve. 

These new limits, obtained from a set of uncertainty values f and a user-defined n, uniquely 

define a new, continuous uncertainty function fextreme(T):  

 

       
10ln

;

10ln

;
)(

0
maxmin

0

extreme

pp TTTT
Tf

 



  (5) 

 

By definition, this Arrhenius-equation-consistent uncertainty fextreme(Ti) is always less than or 

equal to the original uncertainty f(Ti) at every temperature Ti (i=1,..,nT). Fig. 2 shows the values 

of original uncertainty parameters and the curves of the new uncertainty functions for reactions 

H2O2+H→H2O+OH (Fig. 2a) and H+CH3H2+1CH2  (Fig. 2b), i.e. for the same reactions that 

were used in Fig. 1.  
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                                      (a)                                                                           (b) 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Temperature dependence of uncertainty parameter f for reactions H2O2+H→H2O+OH (a) 
and H+CH3H2+1CH2  (b). The original uncertainty parameters (foriginal, red dots) are taken from 
evaluations of kinetic data (this work and Baulch et al. [8], respectively). The Arrhenius-
equation-consistent uncertainty parameters (fextreme, blue dashed line) are determined from the 
band of all allowed Arrhenius curves going between the original limits (see Fig. 1). Uncertainty 
parameters fprior (green solid line) are calculated from the fitted covariance matrix of the 
Arrhenius parameters. 
 

 

Since  is a linear function of the Arrhenius parameters (see Eq. (2)), the new uncertainty 

function fextreme depends only on the original f values and on the value of n, but it is independent 

from the mean values of the Arrhenius parameters. For the two-parameter example (Fig 2a) the 

original, constant uncertainty parameter was consistent with the Arrhenius form (foriginal=fextreme). 

For reaction H+CH3H2+1CH2  (Fig 2b), at intermediate temperatures there are few reliable 

measurements, therefore higher uncertainty was assigned in the middle temperature region. This 

is correct, if the experimental uncertainties are handled independently in the various temperature 

regions. Taking into account that the prior uncertainty should be consistent with the Arrhenius 

expression in the whole temperature region, a significantly lower fextreme uncertainty was obtained 

at intermediate temperatures (10001700 K). In this case, uncertainty information foriginal can be 

considered as redundant at temperatures where foriginal>fextreme, therefore f(3001000 K)=0.15 and 

f(2500 K)=0.2 represent the same information as the original evaluated uncertainty. In the 

general case, of course, not necessarily the uncertainties at the middle temperatures are 

inconsistent with the other ones. The presented procedure is able to correct all high uncertainties 

that are not consistent with lower uncertainties, determined at other temperatures. 
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2.3 Properties of the uncertainty domain of the Arrhenius parameters 

 

 Parameters (α,n,ε) of the possible Arrhenius curves, which fulfil inequalities in equations 

(3) and (4), form the uncertainty domain of Arrhenius parameters. According to the 

mathematical proof presented in Appendix 1, any convex linear combination of the parameter 

sets of extreme Arrhenius curves provides a possible Arrhenius set. This implies that the domain 

of possible Arrhenius parameters is convex and the vertices of the convex shell are given by the 

parameters of the extreme Arrhenius curves. This means that if two or more sets of Arrhenius 

parameters are within this domain, then any convex linear combination of them is also within the 

domain. It is also proved in Appendix 1 that the uncertainty domain of the Arrhenius parameters 

is centrally symmetric for mirroring through the point of central Arrhenius parameters p0. 

Furthermore, the symmetric domain around p0 will define a symmetric uncertainty range in  at 

every temperature, allowing the unique definition of the uncertainty function fextreme(T). 

As discussed in Section 2.1, for the (,)-type example reaction with constant uncertainty 

(reaction H2O2+H→H2O+OH), there are only four possible extreme curves, which are drawn as 

thin black lines in Fig. 1a. Parameters of these extreme Arrhenius curves correspond to four 

corners of a parallelogram on the (,) plane (see Fig. 3a) and all possible Arrhenius parameters 

are within this parallelogram, which is a convex shape. 

A three-parameter (,n,) Arrhenius expression with constant uncertainty parameter f defines 

a convex 3D uncertainty domain of curved irregular shape, which has an infinite number of 

vertices, corresponding to the infinite number of extreme Arrhenius curves. For the second 

example (reaction H+CH3H2+1CH2), the uncertainty function fextreme is constant below 1000 K 

and temperature dependent above 1000 K (see Fig. 2b), thereby the corresponding uncertainty 

domain of Arrhenius parameters has a non-regular shape (see Fig. 3b). Its surface is a convex 

polyhedron and not curved, because uncertainty function fextreme was approximated by a finite 

number of points. 
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                                      (a)                                                                           (b) 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Convexity and symmetry of the uncertainty domain of Arrhenius parameters is shown for 
the two examples that have been used in Figs. 1 and 2. In both figures a) and b), the large red dot 
represents the mean set p0 of the Arrhenius parameters. The small black dots correspond to the 
Arrhenius parameters of the extreme Arrhenius curves (see Fig. 1) and span the vertices (dark 
blue lines) of the convex hull. In the 3-parameter case, the sides of the convex hull are defined 
by the triangles between these vertices. In Fig. 3b, the projections of the mean value and the 
convex hull to the αn, αε, and nε planes are indicated with white dots and light blue lines. 
 

 

3. Efficient storage of the uncertainty domain 

 

In the previous section the determination of a consistent uncertainty band of the rate 

coefficient is described and the features of the corresponding joint uncertainty domain of the 

Arrhenius parameters are discussed. This uncertainty domain may have a very different shape 

depending on the temperature dependence of the original uncertainty parameters. In this section 

we show that the shape of uncertainty band of the rate coefficients, and therefore also the 

uncertainty domain of the Arrhenius parameters can be represented with a few numbers only. 

These are the 6 parameters of the covariance matrix of the extended Arrhenius expression. If the 

temperature dependence is described by a 2-parameter Arrhenius expression ((,) or (,n) 

types), the uncertainty can be defined by the 3 parameters of the covariance matrix. The 

determination of the covariance matrix of the Arrhenius parameters has been discussed in our 

previous publications [10] [11], in the context of the probabilistic interpretation of the 

uncertainty information in the databases. 
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The temperature-dependent rate coefficient k(T) (and its natural logarithm (T)) can be 

considered as a random variable deduced from measurements and calculations. Assuming a 

probabilistic meaning to fextreme, that is if fextreme corresponds to 3 standard deviations (3) [25-

30])) or 2 standard deviations (2) [16-18] of the untruncated distribution of rate coefficient on a 

decimal logarithmic scale, the uncertainty parameter f can be converted [26] to the standard 

deviation of the natural logarithm of the rate coefficient () at a given temperature T: 

)(
10ln

)( TfT


   (6) 

where parameter  is usually assumed to be 3 or 2, respectively.  

Arrhenius parameters , n, and  are also random values, since these can be calculated from 

the random values of (T) at three given temperatures using the linearized Arrhenius equation 

(see Eq. (2)). The joint probability density function of the Arrhenius parameters is independent 

of temperature. This means that all central moments are also independent of temperature, 

including their expected values ( , n ,  ), variances ( 2
 , 2

n , 2
 ) and correlations ( nr , r , 

nr ).  

The following relation was deduced [10] between the variance of  T  and the elements of 

the covariance matrix of the Arrhenius parameters:  

 

TTrTrTrTT

T

nnnnn ln22ln2ln 11
α

22222

T2

 









 ΘΣΘ p
 (7) 

A method was proposed [10] for the determination of the covariance matrix of the Arrhenius 

parameters using equations (6) and (7) from uncertainty parameter f of the rate coefficient at 

various temperatures. To determine the elements of the covariance matrix for the three-parameter 

Arrhenius expression, the uncertainty of the rate coefficient has to be known at least at six 

different temperatures. In the (α,ε) and (α,n) two-parameter cases, the uncertainty of the 

corresponding Arrhenius parameters can be handled in a similar way and the uncertainty of the 

rate coefficient has to be known at least at three temperatures [10]. 

Disregarding the possible stochastic meaning of uncertainty f, the equations (6) and (7) 

provide a means for storing the fextreme(T) function in the form of the covariance matrix of 

Arrhenius parameters. The uncertainty function reconstructed from the covariance matrix is 

called here prior uncertainty and denoted as fprior(T). Despite there being no formal mathematical 

relationship between fextreme and fprior, function fextreme(T) could always be well approximated by 

fprior(T) in all of our investigated cases of more than 30 elementary reactions. Figure 2 shows the 

determined fprior(T) functions for the two example reactions. For the constant uncertainty case, it 
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coincides with the fextreme(T) curve, whereas for the three-parameter example it approximates well 

the corresponding fextreme(T) function.  

In equation (6), the parameter  defines the proportionality between the uncertainty parameter 

f and the standard deviation . When the uncertainty fprior is calculated via  from the 

covariance matrix p, the same parameter  has to be used. This means that the value of  is 

arbitrary in the storage of the f values in the covariance matrix, and the only important 

assumption here is that the uncertainty parameter f is proportional to the standard deviation of .  

 

 

4. Uncertainty of the Arrhenius parameters of the reverse reaction 

 

In the case of many elementary reactions, the rate coefficients can be measured for both the 

forward and reverse directions. Frequently, for technical reasons, the rate coefficient is 

determined in one direction at low temperatures and in the opposite direction at high 

temperatures. The thermodynamic equilibrium constant relates the rate coefficients for the two 

opposing directions, and the uncertainties of the rate coefficients for the two directions can also 

be related by considering the uncertainty of the equilibrium constant. This latter relationship is 

significant because the assessed uncertainty of the rate coefficient is better established if data for 

both directions are taken into account. 

If the Arrhenius parameters of the forward reaction are known, rate coefficient kf can be 

calculated at any temperature T, knowing the standard reaction enthalpy rH
 o  and standard 

reaction entropy rS
 o . The calculation is discussed in several textbooks (see e.g. [37]) and uses 

the following sequence of equations:  o 
r

 o 
r

 o 
r STHG  , KRTG ln o 

r  , 

  i

i
RTpKKc

 o , and cfb Kkk   where K and Kc are the equilibrium constants expressed in 

normalized pressures and molar concentrations, respectively, and coefficients νi are the 

stoichiometric coefficients.  

Combining all these equations and taking the natural logarithm of both sides gives the 

following equation: 

   
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




 
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p
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H
kk

 o 

i

 o 
r

 o 
r

fb lnlnln   (8) 

Note that common physical base units have to be used within the curly brackets. 

At a given temperature T, the last term on the right hand side of equation (8) is constant, thus 

this term has no uncertainty. The standard reaction entropy for small species can be calculated 
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with high accuracy [28]; therefore, the uncertainty of the corresponding term is also negligible. 

This is not true for larger non-rigid molecules and radicals, where the calculated conformational 

entropy may have significant uncertainty at higher temperatures. Both forward rate coefficient kf 

and standard reaction enthalpy rH
 o  have relatively high uncertainty and these can be 

considered to be uncorrelated. If the uncertainty of the entropy term can be neglected, then the 

variance of rate coefficient kb can be calculated in the following way: 

   
2

 o 
r

2
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This equation implies that if the uncertainty of the standard reaction enthalpy is small compared 

to the uncertainty of kf, then the uncertainty f belonging to the rate coefficients of the forward 

and backward reactions can be considered to be equal. 

The reaction enthalpy can be calculated as the linear combination of the standard enthalpies 

of formation of the participating species: 
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Here,  and Hf
 o  are the column vectors of stoichiometric coefficients and the standard 

enthalpies of formation, respectively. The variance of the reaction enthalpy can be calculated 

from the covariance matrix of the standard enthalpies of formation of the participating species. 
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where  o 
fH

Σ  is the covariance matrix of the standard enthalpies of formation. 

The traditional thermodynamic databases contain the enthalpies of formation of the species 

and their standard deviation at 298 K. The Active Thermochemical Tables (ATcT) approach [38, 

39] and the NEAT method [40] also provide information about the correlation of the enthalpies 

of formation. Using Kirchoff’s law, the uncertainty of the standard reaction enthalpy at higher 

temperatures are related to the uncertainties in heat capacities of species, which can also be 

considered to be small. Consequently, the uncertainty in the reaction enthalpy at 298 K may also 

be used as an approximation at higher temperatures. 
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5. Assuming a given distribution of the Arrhenius parameters 

 

Until this point, no particular form of the distribution of the Arrhenius parameters within the 

uncertainty domain was assumed. At the beginning of Section 3, it was assumed that uncertainty 

parameter f is proportional to the standard deviation of  with proportionality constant (ln 10)/. 

However, the chemical kinetics databases define parameter f as extreme deviations from 

log10{k0}, therefore the distribution has to be truncated at these limits. If the original (not 

truncated) probability density function of  has the feature that the points outside of the 

truncation limits have small probability, then the covariance matrix statistically well 

characterizes also the truncated distribution of Arrhenius parameters. This is the case for a 

normal distribution with = 3 or 2, when the probabilities of  values outside the 3 (or 2) 

limits are only 0.0027 and 0.0455, respectively. In the case of a normal distribution it can be 

consistently assumed that  at every temperature and the Arrhenius parameters (,n,) have 

single and multivariate normal distributions, respectively [10]. Furthermore, the standard 

deviations of  and the covariance matrices of Arrhenius parameters for the truncated and 

untruncated normal distributions are approximately the same. On the contrary, in the case of a 

uniform distribution of Arrhenius parameters the covariance matrix p, used for storing the 

uncertainty function, does not characterize statistically the distribution of the Arrhenius 

parameters. In addition, the distribution of  values at various temperatures will neither be 

uniform nor will have the same shape at all temperatures, therefore the ratio of the truncation 

limits and the standard deviation of  will be temperature dependent. 

Here we discuss in detail the cases of normal and uniform probability distributions. It will be 

shown that in both cases the probability distribution of the Arrhenius parameters can be 

reconstructed from the covariance matrix p, which is used for storing fprior(T). We note that the 

probability distribution of the parameters is required by several global uncertainty analysis 

methods [24]. Taking into account not only the domain of uncertainty, but also the probabilistic 

information on the Arrhenius parameters makes the uncertainty calculations more realistic. Also, 

several mechanism optimization and parameter estimation methods require a realistic prior 

distribution of the varied parameters. It makes the procedure more effective, since the search for 

the optimal parameters can be started from the region of Arrhenius parameters that has higher 

probability according to the literature information. 
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5.1 Normal distribution 

 

For the rate coefficients of several hundred elementary gas-phase reactions, dozens of 

measurements and theoretical calculations are available. Their results are usually centred on the 

evaluated rate coefficients, while fewer determinations support values close to the uncertainty 

limits. Consequently, the Arrhenius parameters recommended in the data evaluations have high 

probability, while the values at the edge of the uncertainty domain of the Arrhenius parameters 

have low probability. According to the central limit theorem, if a variable is obtained as a sum of 

several independent random variables, then the distribution of this variable is of nearly normal 

distribution. 

It has been proven in our previous article that if the Arrhenius parameters have multivariate 

normal distribution, then the calculated  will have a normal distribution at any temperature [10]. 

Also, if  follows a normal distribution at many temperatures, then the most natural, consistent 

assumption is that (α,n,ε) follow a multivariate normal distribution [10]. The knowledge of the 

mean values and the covariance matrix of the Arrhenius parameters allows the definition of a 

multivariate normal distribution, which can be sampled according the procedure discussed in the 

appendix of our previous work [10]. In this work,  = 3 and hence the normal distribution of   

truncated at 3 deviations is assumed in equation (6). 

The assumption of a normal distribution is also applicable for the case of backward reactions. 

It is frequently assumed that the enthalpies of formation and the ln{kf} values have normal 

distributions. Any linear function of normally distributed independent random variables also 

follows a normal distribution; therefore ln{kb} will also be normally distributed in equation (8). 

 

 

5.2 Uniform distribution 

 

Frequently only a few measurements exist for an investigated reaction, and therefore a 

temperature-independent uncertainty parameter f is recommended or uncertainty parameter 

values are suggested at few temperatures only. In this case, considering equal probability (i.e. 

uniform distribution) for any possible set of Arrhenius parameters (α,n,ε) is the appropriate a 

priori assumption during the optimization or uncertainty analysis of a kinetic model. Assuming a 

uniform distribution as a prior distribution in parameter optimization has the advantage that none 
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of the parameter sets is privileged. The disadvantage of a uniform distribution is that the 

assumed probability at the uncertainty limits is equal to that of the mean value, and it drops to 

zero just outside the limits. This section presents an algorithm for the generation of sets of 

Arrhenius parameters with uniform distributions within their domain of uncertainty. The 

algorithm describes the (,n,) three-parameters case, and a similar algorithm is applicable for 

the (,) and (,n) two-parameters cases. 

The covariance matrix is able to store efficiently the fextreme(T) function, but it does not 

characterize statistically the uniform distribution of p. However, the domain of the uniform 

distribution of the Arrhenius parameters can be reconstructed from the fprior(T) function 

parameterized by the covariance matrix. When a uniform distribution is assumed, the selection of 

 is arbitrary; we used  = 3 in equation (6) in our studies. 

The first step is sampling (Ti) values at three different selected temperatures Ti from a 

uniform distribution within their range of uncertainty determined by fprior(Ti). It is shown in 

Appendix 2 that if the (Ti) values have uniform distributions, then the Arrhenius parameters 

obtained by solving equation (2) at three temperatures also have uniform distributions. The p 

parameters obtained are checked and those values are discarded that have the parameter value n 

outside the predefined limits or correspond to Arrhenius curves going outside the uncertainty 

limits of  at any other temperature (see equations (3) and (4)). It is shown in Appendix 1 that 

the distribution of Arrhenius parameters obtained after discarding these sets will also be uniform, 

and its domain remains convex and symmetric. By this means, the uncertainty domain of the 

Arrhenius parameters can be evenly sampled in an efficient way.  

The domain and distribution obtained do not depend on the initial selection of the three 

temperatures where the (Ti) values are sampled, but a good selection may improve the 

effectiveness of the sampling procedure. The recommended selection of sampling points are the 

two edges of the temperature interval and/or the temperatures with the lowest uncertainty, since 

this choice usually leads to low number of rejected Arrhenius curves, which go outside the 

allowed ranges of  at least at one of the other temperatures or that of n. 

We emphasize that this section discussed the case of the uniform distribution of the Arrhenius 

parameters, which does not imply that the distribution of  is uniform at all temperatures. As 

equation (2) shows,  is a weighted sum of three random variables with joint uniform 

distribution over a convex and symmetric domain, which results in a higher probability near the 

mean 0 value. 
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6. Software tools 

 

For the determination of the uncertainty limits of the rate coefficients, the joint uncertainty 

domain and the probability distribution of rate parameters, and for their efficient sampling, four 

computer codes called u-Limits, UBAC, JPDAP and SAMAP were developed and used in this 

work. These computer codes, together with their user manual, can be freely downloaded from 

our Web site [41]. JPDAP has already been made available with our previous publication [10]. 

 

 

6.1 Matlab code u-Limits 

 

The Matlab code u-Limits speeds up the processing of the collected reaction kinetics 

information. Once all kinetic information has been collected, the Tf tables and the covariance 

matrix of the Arrhenius parameters can be generated in a few minutes using this Matlab code, 

which subsequently also calls codes UBAC and JPDAP. The code provides a visualization of the 

process and assists selection from several possible choices. 

A separate text input file is needed for each investigated reaction. The first lines of this text 

input file follow the format of the summary page of the NIST database [1]. This means that each 

line contains a literature identifier (which is the NIST squib if it exists), the temperature range 

([Tmin,Tmax] in K units), Arrhenius parameters (ln {A}, n, E/R; units: cm, mol, s, K). These lines 

can be copied from the NIST summary Web pages. Information obtained from other sources has 

to be encoded in a similar way. Arrhenius plots referring to different bath gases (e.g. data 

belonging to reactions H+O2+N2=HO2+N2 and H+O2+Ar=HO2+Ar) can be joined and processed 

together by assuming a temperature-independent 3rd body collision efficiency of the molecules of 

the bath gas relative to nitrogen. The input contains the Arrhenius parameters of the selected 

mean rate coefficient expression and the range of temperature of the analysis.  

The program at equidistant points of temperatures determines empirical uncertainty f(Ti) as 

the larger of the two distances (on a decimal logarithmic scale) between the mean rate coefficient 

k0 and the upper and lower extreme rate coefficient values (see equation (1)). This temperature 

interval is by default 100 K, but any other value can be defined by the user. The automatically 

calculated f(Ti) values can be manually revised by the user. Such corrections are needed when 

the automatically determined f values are unrealistically small in a temperature range, which may 

happen, if in this temperature range all available (typically few) data points are close to the mean 
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curve. Another way of manual intervention is omitting those rate coefficients that unrealistically 

widen the band of uncertainty. For many elementary reactions, the oldest measurements 

provided rate coefficient values that are very far from the recently accepted values. Usually, the 

initially applied experimental method was later superseded by newer techniques, which known to 

have smaller systematic error. In such cases the values obtained by obsolete methods are not 

considered at the determination of the uncertainty ranges. These data are not deleted from the 

input text file, but are flagged as not used ones. The automatically generated f values together 

with these manual corrections provide the foriginal(Ti) uncertainty parameter values. 

The Matlab code u-Limits prepares the input text files for Fortran codes UBAC and JPDAP, 

runs these codes, and visualizes their results. One of the generated plots shows the foriginal(Ti) 

points, and the fextreme(T) and fprior(T) functions determined by codes UBAC and JPDAP. Another 

generated figure is an Arrhenius plot that shows all considered  vs. 1/T functions, together with 

the mean line, and the upper and lower uncertainty limits calculated from fprior(T). This allows 

the user to check if the determined uncertainty range of Arrhenius parameters is consistent with 

all data considered. 

 

 

6.2 Program UBAC 

 

Fortran code UBAC (the acronym for Uncertainty Band of Arrhenius Curves) first 

determines a band of possible Arrhenius curves going between the symmetric limits around the 

mean Arrhenius curve, defined by the foriginal(Ti) values at nT temperatures and the limits in n. 

Based on the symmetrically located boundaries of the Arrhenius curves, a continuous fextreme (T) 

function can be defined by their distance from the mean curve for all temperatures in the interval. 

The Arrhenius curves of extreme parameter sets, which define the boundaries of all possible 

Arrhenius curves and the convex hull of their parameters, will go through at least 3 (or 2) points 

of the lower and upper uncertainty boundaries of  defined in equation (3). Therefore, taking all 

the 3- (or 2-) combinations of nT temperatures, and selecting either the high or the low boundary 

(0(Ti)  f(Ti)ln10), several Arrhenius curves can be determined and plotted. We discard all the 

curves, which go outside the allowed ranges at any of the nT–3 (or nT–2) temperatures. For 

Arrhenius expressions containing parameter n, those curves are also discarded which have value 

n outside the user defined range of [nlow, nhigh]. Therefore, further limiting Arrhenius curves 

might be obtained by investigating curves which are hitting one of the boundaries in n and going 
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through boundaries in  only at two temperatures. Symmetric limiting values nlow=n0–n and 

nhigh=n0+n are recommended (see equation (4)) to preserve the symmetry of uncertainty domain 

of Arrhenius parameters and thereby leave mean values equal to the central values (see 

Appendix 1). 

 

 

6.3 Program JPDAP  

 

Fortran code JPDAP (the initialism for Joint Probability Density of Arrhenius Parameters) 

has been announced earlier [10] without a description of the numerical method applied. The code 

allows the determination of the covariance matrix of the Arrhenius parameters by fitting equation 

(7) to the uncertainty parameter values fextreme(Ti). Consideration of the constraints makes the 

direct fitting a formidable task and even advanced codes for constrained least-squares fitting like 

EASY-FIT Express [42] usually fail to converge. In code JPDAP the constraints are taken into 

account in an indirect way by reformulating equation (7) using new, unconstrained parameters 

(see Appendix 3) and a simplex algorithm is used for the fitting [43].  

Code JPDAP determines the covariance matrix of the three Arrhenius parameters α, n, ε, or 

those of two Arrhenius parameters (α, ε or α, n). The codes requires that the f parameter values 

be known at least at 6 or 3 temperatures for the 3 or 2 Arrhenius parameter cases, respectively.  

 

 

6.4 Program SAMAP  

 

Code SAMAP can generate sets of Arrhenius parameters according to either normal or 

uniform distributions, using real random numbers, random numbers with Latin Hypercube 

sampling and Sobol’ sequences. For the discussion of the features of these quasi-random 

numbers we refer to the recent book of Turányi and Tomlin [37]. The required inputs are the 

mean values and the covariance matrix of the Arrhenius parameters, the type of distribution, the 

temperature interval of validity, the n limits, and the required number of samples. The outputs 

are sets of Arrhenius parameters that follow either normal or uniform distribution and provide  

values strictly within the uncertainty limits defined by fprior(T) for the given temperature interval. 
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7 Uncertainty evaluations of the elementary reactions of H2 and syngas combustion 

 

7.1 Selection of the elementary reactions to be investigated 

 

As a part of a project to investigate the performance of several recently published mechanisms 

for the combustion of hydrogen [44] and syngas (also called wet CO) [45], our aim was to 

collect all experimental data that have ever been used for testing these mechanisms. The 

experimental papers usually contain one or several datasets. In these datasets usually one 

experimental parameter is changed systematically, while the other experimental circumstances 

are kept fixed. A large set of experimental data was accumulated [44] for hydrogen combustion: 

ignition measurements in shock tubes (770 data points in 53 datasets) and rapid compression 

machines (229/20), concentration–time profiles in flow reactors (389/17), outlet concentrations 

in jet-stirred reactors (152/9) and flame velocity measurements (631/73), covering wide ranges 

of temperature T (890 K to 2550 K), pressure p (0.23 atm to 87 atm) and equivalence ratio φ 

(0.1–5.6). Also, a large amount of experimental data was collected [45] for syngas combustion: 

ignition studies in shock tubes (732 data points in 62 datasets) and rapid compression machines 

(492/47), flame velocity determinations (2116/217) and species concentration measurements 

from flow reactors (1104/58), shock tubes (436/21) and jet-stirred reactors (90/3). These 

experimental datasets also cover wide ranges of temperature T (700 K to 2870 K), pressure p 

(0.5 atm to 450 atm), equivalence ratio φ (0.1–6.8) and CO/H2 ratio (0.05–243).  

All data were encoded in PrIMe format [46]. A custom made Matlab code called Optima [19] 

was used for carrying out simulations at each experimental condition. Code Optima reads the 

PrIMe datafile, created the input file of the corresponding CHEMKIN-II simulation code 

(SENKIN, PREMIX or PSR), ran the simulations using the recent mechanism of Kéromnès et al. 

[47], carried out local sensitivity analysis, and processed the results. This way the top ten most 

influential reactions at each experimental condition were identified. The 22 reactions steps 

discussed in this paper (see Table 2) are the union of the top ten most influential reactions at all 

conditions. Those reaction steps that appeared in the top ten only in a few experimental data 

points were not included in the 22 selected reactions. This procedure ensured that the most 

influential reaction steps under the majority of experimental conditions published in the literature 

were identified.  
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7.2 Protocol for data collection and evaluation 

 

For the investigation of the uncertainty of the rate parameters of each elementary reaction, 

the data were collected by strictly following the protocol below: 

1. Using the NIST Chemical Kinetics Database [1], data for the experimental and theoretical 

determinations of the rate coefficients were collected for both directions of the elementary 

reaction. The direction associated with more rate information was considered as the forward 

one. High-pressure and low-pressure limits were handled separately. The uncertainty of the 

parameters of pressure dependence (e.g. Troe parameters) was not investigated. 

2. Evaluated kinetics data were collected from several reviews. These reviews also suggested 

original articles on experimental measurements and theoretical calculations that were not 

referenced in the NIST database. Direct experimental determinations and theoretical results, 

discussed in the reviews and not present in the NIST web site were added to our data 

collection. The starting point was the latest evaluation of Baulch et al. [8]. The following 

recent review articles about hydrogen combustion were also considered: Ó Conaire et al . 

[48], Konnov [9], Hong et al. [49] , Burke et al. [50], and Kéromnès et al. [47] . Several of 

these reviews (Konnov [9], Hong et al. [49] and Burke et al. [50]) also contain a detailed 

discussion about the experimental and theoretical determinations of the rate coefficient 

values. For the reactions of the carbon-containing species, the following review and 

modelling articles were considered: Mueller et al. [51], Davies et al. [15], Li et al. [52] , Sun 

et al. [53] and Kéromnès et al. [47].  

3. The Arrhenius parameters of the backward reactions were converted to those of the forward 

reactions using equations (13), (14), (15), (16) with the help of program MECHMOD [54]. 

The required thermodynamic data (enthalpies and entropies of formation) for the 

calculations were taken from Kéromnès et al. [47]. The original forward parameters and 

those obtained from the reverse direction measurements were used together for data 

evaluation.  

4. Using all the information above, separate tables of Arrhenius parameters were created for 

each elementary reaction based on the reviews, measurements and theoretical papers. If the 

rate coefficient depended on 3rd body efficiencies, then the corresponding series of tables 

were set up also for each bath gas. In these tables, the rate parameters were always given for 

the forward reaction and a note indicated if the parameters had been calculated from the data 

of the backward reaction. In this latter case, we also estimated the increase of the uncertainty 

using equation (9). In all cases we found that for the species of the hydrogen and syngas 
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combustion systems the uncertainty of the thermodynamic data is low, therefore the 

uncertainty of the backward reaction can be considered to be equal to the uncertainty of the 

forward reaction. This may not be the case for other combustion systems, when the fuel is a 

larger molecule. Separate tables contained the original Arrhenius parameters determined for 

the backward reaction, allowing the checking of the corresponding information in the main 

tables. 

5. Third body collision efficiency parameters were collected for all bath-gas-dependent rate 

coefficients. In all cases, the collision efficiency of nitrogen was considered to be unity and 

all other collision efficiencies were related to this. Some reviews and other literature sources 

define separate Arrhenius parameters for different bath gases. Plotting the ratio of these rate 

coefficients as a function of temperature (e.g. plotting m(T) = k(Ar,T) / k(N2,T) ) usually 

indicates that collision efficiency m changed little in the whole temperature range. In this 

work we always assumed temperature independent third body collision efficiencies. The 

relative collision efficiencies are summarized in a table that contains information for bath 

gases H2O, H2, Ar, He, O2, CO, and CO2. This table indicates the mean value of the relative 

collision efficiency, a reasonable conservative range of collision efficiencies and the 

collision efficiencies as used in the various articles. Due to the scarcity of the 3rd body 

collision efficiency information, the mean value and the range of uncertainty were 

determined in an arbitrary, but conservative way and these values were not results of data 

evaluation. The rate information obtained for different bath gases were combined using the 

indicated mean relative collision efficiency values. 

6. A mean rate coefficient–temperature function 0(T) was selected. For most of the reactions, 

this mean value was identical to the Baulch et al. [8] recommendation. In other cases, 

another literature (T) was selected that runs approximately halfway between the upper and 

lower extremes of the literature values. It has to be emphasized that 0(T) is the mean curve 

of the uncertainty band and not a new evaluated rate coefficient. This work does not aim to 

recommend new evaluated rate coefficient–temperature functions and the selected set of 

Arrhenius parameters should not be interpreted in this way. 

7.  For some of the reactions, the temperature dependence of the rate coefficient is defined by a 

double Arrhenius expression. If this temperature dependence could be equally well 

described by a single Arrhenius expression, then the latter was selected as the mean value. If 

a double Arrhenius expression was needed, the combustion temperature range (700–2500 K) 

was usually controlled by one of the two sets of Arrhenius parameters. In this case the k0(T) 
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function was the sum of the two Arrhenius expressions, but the calculated uncertainty 

domain was attributed to the Arrhenius expression that are dominant in the combustion 

temperature range. In our investigations two reactions (R13 and R19) belonged to this 

category. 

8.  The temperature interval [Tmin, Tmax] was usually defined as 700–2500 K. In this temperature 

range, foriginal values were determined equidistantly at every T using the program u-Limits 

in such a way that all considered experimentally determined or theoretically calculated (T) 

functions remained between min(T) and max(T) curves. Usually T=100 K was used. 

Program UBAC was used to process foriginal values in order to determine uncertainty 

parameter values fextreme at every 100 K, which are consistent with the Arrhenius expression 

in the whole temperature interval. 

9. The fextreme  T data pairs were used for the determination of the parameters (standard 

deviations and correlations) of the covariance matrix of the Arrhenius parameters by 

program JPDAP. The fprior(T) curve was then calculated from the covariance matrix 

obtained.  

10. For several important elementary combustion reactions many experimental and theoretical 

determinations are available. For these elementary reactions, multivariate normal 

distributions of the Arrhenius parameters are assumed. In our studies, 13 reactions (R1R4, 

R6R12, R15R16) belonged to this category. 

11. For many elementary reactions very little chemical kinetics information is available. The 

data evaluations used usually recommended a temperature-independent uncertainty 

parameter f. In this case all the three uncertainty functions were the same 

(foriginal(T)=fextreme(T)=fprior(T)), and = f  (ln 10) /3, while all other parameters of the 

covariance matrix were zero. Uniform distributions of the Arrhenius parameters among their 

limits can be assumed in this case. In our investigations, 8 elementary reactions (R5, R13, 

R14, R17R20, R22) belonged to this group.  

12. If the rate coefficient of an elementary reaction does not change with temperature and the 

rate coefficient has been determined in many investigations, then a normal distribution for  

can be assumed, which implies the same normal distribution for . In this case 

foriginal=fextreme=fprior and all parameters of the covariance matrix are zero, except for = f  

(ln 10) /3. This is the case of reaction R21 in our studies. 
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(c) 

 

 

Fig. 4. (a) Arrhenius plot of the rate coefficient of reaction R4: OH + H2→ H2O + H. All 
measured and theoretically suggested rate coefficients found in the literature are shown. The 
mean curve is indicated with thick red line. (b) The previous figure was transformed in such a 
way that at each temperature the mean log10{k0} was subtracted from the measured or 
theoretically calculated log10{k} values. As a result of the transformation, log10{k/k0} was plotted 
as a function of 1000 K/T. Some of the rate coefficient functions were far from the band 
determined by the others. These are indicated by grey dash-dotted lines and grey dots, and not 
considered at the determination of the uncertainty band. The latter is represented as foriginal points 
at every 100 K interconnected with lines. (c) Taking the absolute values of the not rejected rate 
coefficient functions plotted in (b), the relation of the uncertainty parameters and the 
experimental (or theoretical) rate coefficient expressions is depicted. The black dots indicate 
foriginal points, the dashed line the fextreme function, while the solid red line the fprior function. 
 
 
   Transformation of the Arrhenius plot of all literature rate coefficient expressions to the 

uncertainty band is illustrated in Fig. 4 on the example of reaction R4: OH + H2→ H2O + H. All 

collected measured and theoretically suggested rate coefficient expressions are given in the 

Supplementary and these are depicted in an Arrhenius plot in Fig. 4a. The selected mean rate 

expression was originally suggested by Baulch et al. [8]. Fig (b) shows log10{k/k0} as a function 

of 1000 K/T, where k0 is the mean rate coefficient value and the k values are calculated by the 

rate expressions suggested in the literature. This is equivalent to the calculation of the difference 
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of log10{k} and the mean log10{k0}. This figure also contains the foriginal points at every 100 K. In 

the low (300 K to 450 K) and high (900 K to 2500 K) temperature regions the foriginal points 

closely follow the extreme log10{k/k0} values. In the middle temperature range (450 K to 900 K) 

the foriginal points interpolate the high uncertainty of the neighbouring temperatures to avoid the 

suggestion of unrealistically low uncertainty in this region. This figure also shows that taking 

into account all rate coefficient expressions suggested in the literature would lead to 

unrealistically last uncertainty limits (about f=0.7). The not considered rate coefficient 

expressions are indicated by grey dash-dotted lines in Fig. 4 (b) and are denoted by non-bold 

characters in the corresponding table of the Supplementary. Finally, Fig. 4 (c) shows the absolute 

values of the log10{k/k0} functions and their relation to the foriginal, fextreme and fprior uncertainty 

parameter functions. 

All the tables and figures obtained using the protocol above are provided in the 

Supplementary Material. A series of tables was produced for each elementary reaction 

containing information on the rate coefficients (see step 4) and possibly the 3rd body collision 

efficiency parameters (see step 5). To support the applicability of the content of the tables, 

reference is made to the original reaction numbering of the review and modelling papers, and 

page numbers in the Baulch et al. [8] review. At the end of each section for a given reaction, the 

uncertainty parameter foriginal(Ti) obtained from the overview of the literature, is tabulated in 

every 100 K within the temperature range of evaluation. The information of the tables is 

visualized in a series of figures. The first figure is an Arrhenius plot that shows all reviewed, 

measured, and calculated rate coefficients that were used in the determination of the uncertainty 

limits. The corresponding rows of the tables are printed in bold. This figure also shows the mean 

curve, and the upper and lower uncertainty limits, calculated from the covariance matrix of the 

Arrhenius parameters. The next figure presents the tabulated foriginal(Ti) points together with 

fextreme(T) and the fprior(T) function. Finally, a table provides the parameters of the calculated 

covariance matrix (e.g. , n, , rn, r, rn for a three-parameter Arrhenius expression), the 

temperature range of validity and, for a quick assessment, also the minimum and maximum 

values of the uncertainty parameter fprior in this temperature range. Comparing these values with 

the uncertainty parameters published in the literature, the fprior(T) values recommended here are 

usually equal to or slightly higher, since we always provide a safe upper estimate for the 

uncertainty of the rate coefficients at the investigated temperatures.  
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7.3 Discussion of the uncertainty information for each reaction step 

 

Reaction R1: H + O2 = O + OH 

This is the main chain branching reaction in hydrogen and syngas combustion systems, and also 

in the high temperature oxidation of hydrocarbons. A large amount of experimental data is 

available for both the forward and backward directions. The rate coefficient is known with low 

uncertainty: Baulch et al. [8] and Konnov [9] indicated f=0.10–0.18 uncertainty. Hong et al. 

recently measured [55] the rate coefficient in the temperature range 1100 – 3370 K and they 

reported a 10% (2) experimental uncertainty (about f=0.04). Burke et al. [50] also recently 

reviewed this rate coefficient and basically accepted the Hong et al. parameters. However, the 

calculated ignition delay times and flame velocities are so sensitive to this rate coefficient, that 

this relatively small uncertainty causes high scatter in the simulation results. Our mean rate 

expression is the Baulch et al. recommendation, the estimated uncertainty is f=0.21 at 1300 K 

and increases to both lower temperatures (f= 0.29 at 800 K) and higher temperatures (f= 0.33 at 

2700 K).  

 

Reaction R2: H + O2 + M = HO2 + M (low-pressure limit) 

This reaction converts the highly reactive H atom to the low reactivity HO2 radical. Selection of 

the rate coefficients of reactions R1 and R2 have high influence on the calculated flame 

velocities and ignition delay times of hydrogen, syngas and hydrocarbon oxidation systems. In 

atmospheric combustion systems and up to moderate pressures, the rate coefficient is determined 

by the low-pressure limit, therefore only that uncertainty is investigated here. In accordance with 

its high importance, several direct measurements are available, mainly with argon and nitrogen 

bath gases, but some measurements with water and helium bath gases are also available. Baulch 

et al. [8] and Konnov [9] suggest uncertainty parameter f=0.08–0.3 for the various bath gases, 

while our estimation changes between f=0.19 (600 K) and f=0.39 values (2000 K). Our mean rate 

expression is the Baulch et al. recommendation for bath gas N2. Third body collision efficiencies 

10.0, 0.5, and 0.6 were used for bath gases H2O, Ar, and He, respectively, relative to the unit 

collision efficiency of N2. Several reviewers recommend (,n)-type two-parameter Arrhenius 

expressions and our uncertainty domain also refers to these two parameters.  
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Reaction R3: O + H2 = H + OH 

Reaction R3 is the second most important chain branching step (after R1) in several combustion 

systems and, accordingly, many experimental results have been published on the determination 

of the rate coefficient. Baulch et al. [8], Hong et al. [49] and Burke et al. [50] recommended 

double Arrhenius expressions, while Konnov [9] and Kéromnès et al. [47] used a single 3-

parameter Arrhenius expression. We adopted the suggestion of Konnov [9] as the mean rate 

coefficient expression and therefore the uncertainty domain of the corresponding three Arrhenius 

parameters were defined. The estimated uncertainties were f= 0.20 (Baulch et al. [8]) and f= 0.11 

(Konnov [9]). The uncertainty parameter derived here changes between f=0.15 and 0.20. 

 

Reaction R4: OH + H2 = H2O + H 

The reverse reaction converts H atoms to OH radicals and therefore the calculated flame velocity 

is highly sensitive to its rate coefficient at fuel-lean conditions. There are many experimental 

data available for the rate coefficient of the forward reaction and also some data for the 

backward direction. Konnov [9] suggested f=0.3, while Baulch et al. [8] assumed f=0.1 at 250 K, 

increasing to f=0.3 at 2500 K. We used the mean rate coefficient expression of Baulch et al.  and 

our uncertainty limits are very close to the Baulch et al. [8] recommendation, that is f=0.10 at 

300 K increasing almost linearly to 0.31 at 2500 K. 

 

Reaction R5: H2O2 + H = H2 + HO2 

A single room temperature measurement and few theoretical calculations are available. Baulch et 

al. [8] and Konnov [9] suggested significantly different rate expression compared to those of 

Hong et al. [49], Burke et al. [50] and Kéromnès et al. [47]. A temperature-independent 

uncertainty parameter, f= 0.5, was suggested by both Baulch et al. [8] and Konnov [9]. We used 

the rate coefficient expression of Kéromnès et al. [47] as the mean and, by assuming a 

temperature-independent uncertainty of f= 0.6, the uncertainty limits obtained include all review 

recommendations above 400 K. 

 

Reaction R6: H + HO2 = OH + OH 

The rate coefficient of the overall reaction (H + HO2 → products) was measured at room 

temperature, but the branching ratio is uncertain, especially at higher temperatures. Baulch et al. 

[8] and Konnov [9] suggested uncertainty parameters f=0.15 and f=0.3, respectively. The 

recommendation of Baulch et al. [8] is very different from the later reviews, and Konnov [9] is 

also slightly different from the others. Burke et al. [50] provided a detailed discussion of the 
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reaction and they also revisited the theoretical determination of its rate coefficient. Our mean line 

corresponds to the Kéromnès et al. [47] two-parameter (,)-type recommendation, which is 

almost identical to the Hong et al. [49] and Burke et al. [50] recommendation. The suggested 

uncertainty limits are determined by the deviations between the rate coefficient expression of 

Konnov [9] and those of the others. The obtained uncertainty–temperature function was further 

increased by f=0.1, which resulted in the recommendation of Konnov [9] not lying at the edge of 

the uncertainty range. The uncertainty parameter function obtained varies from 0.28 to 0.47. 

 

Reaction R7: H + HO2 = H2 + O2 

The reverse reaction of R7 is the main initiation reaction in the homogeneous explosion of 

hydrogenoxygen mixtures. Baulch et al. [8] and Konnov [9] suggest an uncertainty parameter 

f=0.3. The measurements, theoretical calculations and reviews span a band with the expression 

of Hong et al. [49] in the middle. Therefore, the expression of Hong et al. [49] was selected as 

the mean, and the width of the uncertainty band was increased by f=0.1 to include all 

recommendations. The uncertainty parameter obtained varies between 0.28 and 0.54. 

 

Reaction R8: HO2 +OH = H2O + O2 

Reaction R8 is an important chain termination reaction in flames. The reaction was recently 

reviewed and discussed in details by Burke et al. [56]. Several authors (Konnov [9], Burke et al. 

[56], Hong et al. [57]) recommended the application of the sum of two Arrhenius expressions, 

while other reviewers recommended a single 2-parameter Arrhenius expression. We investigated 

the uncertainty of the 2-parameter Arrhenius expression as suggested by Kéromnès et al. [47]. In 

the determination of the uncertainty range, the very low measured values of Hippler et al. [58] 

and Kappel et al. [59] were not considered, in accordance with the analysis of Burke et al. [56]. 

The recommendations of Baulch et al. [8] and Konnov [9] relied on the Hippler et al. and Kappel 

et al. measurements, therefore their suggestions were not considered here. The remaining 

measurements and reviews suggest an uncertainty band, which was further increased by f=0.1 to 

include all data, giving an uncertainty parameter near f=0.45. This uncertainty margin 

satisfactorily includes the results of all recent measurements. The mean rate expression is an 

(,)-type two-parameter Arrhenius expression, but considering only the uncertainty of the 

Arrhenius parameters  and  did not provide a good description of the fextreme(T) uncertainty 

parameter curve. Therefore, while the mean value of n was kept at zero, we assumed that it has a 
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nonzero uncertainty. Assuming that all the three Arrhenius parameters are uncertain allowed a 

good description of the shape of the uncertainty band while n has a value as low as 0.32.

 

Reaction R9: OH + OH → H2O2 (high-pressure limit) 

The high-pressure limit rate coefficient of reaction R9 is important only at pressures much higher 

than atmospheric, whereas at atmospheric pressure the reaction is close to its low-pressure 

limiting behaviour. The forward reaction is a sink of the OH radicals, while the reverse reaction 

is a key reaction for the simulation of fuelair mixtures in engines (see the discussion by Hong et 

al. [49], who refers to Westbrook [60]) There are no experimental data at combustion 

temperatures, only below 800 K. Baulch et al. [8] recommended a high-pressure limit rate 

coefficient only in the temperature range of 200400 K with an uncertainty f=0.2. Konnov [9] 

provided a recommendation up to 1500 K, with an uncertainty f=0.4. Hong et al. [49] 

recommended a rate coefficient for the reverse reaction in the temperature range 1000  1200 K 

with an uncertainty of 21 (f=0.08). Troe [61] reviewed this reaction in detail in both directions, 

and recommended parameters for the temperature and pressure dependence of the rate 

coefficient based on experimental results and theoretical calculations. In our calculations the rate 

coefficient expression of Konnov [9] was used as the mean curve. The uncertainty limits were 

defined to include all rate coefficients recommended in the reviews. This uncertainty parameter 

is 0.4 at 1000 K, increasing to 0.5 at 1500 K and 0.7 at 2000 K. The rate expression of Konnov 

was (,n)-type, but the T–f points could not be reproduced by assuming that these Arrhenius 

parameters are uncertain only. Therefore, the activation energy E was also considered to be 

uncertain, and in this way the fitted f(T) function is satisfactorily described the uncertainty 

points. 

 

Reaction R9: OH + OH+M = H2O2+M (low-pressure limit) 

For the bath gas N2, Baulch et al. [8] recommended a rate coefficient only for the temperature 

range 200  400 K (f=0.2), while Konnov [9] provided a rate coefficient with uncertainty f = 0.4 

in temperature range 250  1400 K. Hong et al. [49] recently investigated this reaction and 

determined a more accurate rate coefficient expression with an uncertainty of 21 (f=0.08) in 

range 1000 – 1460 K. Kéromnès et al. [47] used a slightly different expression than Hong et al. 

to describe better the indirect experimental data at high pressures. The recommendations of 

Konnov [9] and Baulch et al. [8] are very different from the recent Hong et al. [49] 

measurements, therefore these recommendations are not considered here. All remaining 
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measurements and reviews resulted in an uncertainty value, which was increased by 0.1 to 

include all the data. The obtained uncertainty parameter values fprior(T) are 0.35 at 800 K, 

increasing to 0.50 at 1000 K and 0.70 at 1900 K. The experimental data refer to bath gases N2, 

Ar and H2O. We used mean 3rd body efficiencies m(Ar) = 0.67 and m(H2O) = 8.33 relative to 

that of nitrogen. 

 

Reaction R10: H + OH + M = H2O + M (low-pressure limit) 

Calculated flame velocity values are very sensitive to the rate coefficient of this recombination 

reaction, which is close to the low-pressure limit at all experimental conditions. There is limited 

number of experimental data for N2, Ar and H2O bath gases. Srinivasan and Michael [62] 

recently measured the rate coefficient at high temperatures (2196 – 3190 K) with low (18%) 

reported uncertainty, although these values are not in good accordance with the previous 

measurements. Konnov [9] suggested uncertainty f=0.3, while Baulch et al. [8] suggested f=0.3 

for Ar and f=0.5 for N2 and H2O. We accepted the rate expression of Konnov [9] for N2 bath gas 

as the mean one. Experimental and theoretical values for bath gases Ar and H2O were merged 

with the N2 data using relative 3rd body efficiency values m(Ar)= 0.38 and m(H2O)=6.45. The 

reviews, and the experimental and theoretical data provide an uncertainty band with typical 

radius f=0.3 at 400 K increasing to f=0.63 at 2000 K.  

 

Reaction R11: OH + OH = H2O + O 

Many experimental data in good accordance are available. Baulch et al. [8], Konnov [9], and 

Hong et al. [49] suggested rate coefficient expressions with low uncertainty. The f values are 

0.15, 0.18 and 0.060.10, respectively. We accepted the expression of Baulch et al. [8] as our 

mean. The uncertainty band determined includes all the data and fprior(T) increases from 0.20 at 

900 K to 0.32 at 2000 K.  

 

Reaction R12: H + H + M = H2 + M (low-pressure limit) 

There are measured data with bath gases N2, Ar, H2, and H2O. Most of the reviews provide 

different rate expressions for the different bath gases, but Kéromnès et al. [47] recommended a 

single Arrhenius expression for nitrogen and various 3rd body efficiencies for the other bath 

gases. Baulch et al. [8] recommended f = 0.5 in the case of all bath gases, while Konnov [9] 

considered different f values for the bath gases of Ar (0.3), N2 (0.5), H2 (0.4), and H2O (0.7). We 

adopted the [8] recommendation of Baulch et al. for nitrogen as the mean value. Experimental 

and theoretical values for the other bath gases were merged with the N2 data using 3rd body 
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efficiency values m(Ar)= 0.87, m(H2)= 2.5 and m(H2O)=12. These values outline an uncertainty 

band, which was widened by f = 0.1, giving values increasing from f=0.35 (600 K) to f=0.70 

(2100 K).  

 

Reaction R13: HO2 + HO2 = H2O2 + O2  

At low temperatures, this reaction proceeds via two mechanisms, one of which is pressure 

dependent and the other is pressure independent. There are many experimental data, but almost 

all these data are below 400 K. Many low-temperature measurements were carried out in 

nitrogen bath gas at 1 bar, in accordance with the atmospheric significance of this reaction. At 

combustion temperatures (above about 500 K) the pressure-independent mechanism is the 

dominant, and therefore the rate coefficient can be considered pressure independent. All 

reviewers suggest a double Arrhenius expression. Konnov [9] proposed a slightly different 

expression, while the recommendation of all other reviewers are identical. Plotting the Baulch et 

al. [8] recommendation (see the figure in the Supplementary Material) shows that both terms of 

the double Arrhenius expression are important in the temperature range of 650 – 1000 K. Above 

1000 K the expression is dominated by the positive activation energy term and below 650 K it is 

dominated by the negative E term. Baulch et al. suggested f=0.15 in temperature range 550 – 800 

K rising to 0.4 at 1250 K. Konnov provided separate uncertainties (f=0.15 and f=0.4) for the 

negative and positive activation energy expressions, respectively. Since we are interested in the 

uncertainty of the rate coefficient above 700 K, a temperature-independent uncertainty parameter 

fprior= 0.4 was accepted, and the uncertainty of the Arrhenius parameters of the positive activation 

energy term was calculated. 

 

Reaction R14: H2O2 + H = H2O + OH 

The few measurements available were made before 1974 and below 770 K. Both Baulch et al. 

[8] and Konnov [9] suggested uncertainty parameter f=0.3 for the temperature region 300 – 1000 

K. We accepted the suggestion of Kéromnès et al. [47] as the mean rate expression and assumed 

a temperature-independent f=0.4. The corresponding uncertainty band includes all rate 

coefficient curves suggested in the various reviews in temperature range 300 – 2500 K. 

 

Reaction R15: CO + OH = CO2 + H 

This is the most important elementary CO reaction in combustion systems, since it converts OH 

radicals to H atoms. Kéromnès et al. [47] and Davies et al. [15] suggested a double Arrhenius 

expression, while Sun et al. [53] recommended a triple Arrhenius expression. The reaction is 
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pressure dependent at low temperature, whereas at combustion temperatures it is pressure 

independent. The Arrhenius A values of Davies et al. [15] are optimized ones and they assumed 

uncertainty f=0.08. Many measurements for this rate coefficient are available. We accepted the 

single three-parameter Arrhenius equation suggested by Li et al. [63] as the mean rate 

expression. Assuming uncertainty parameter fprior(T) changing from 0.18 (1200 K) to 0.3 (2500 

K), the uncertainty band includes all recent rate determinations and reviews.  

 

Reaction R16: HCO + M = H + CO + M 

This is another very important CO elementary reaction. The rate coefficient is close to the low-

pressure limit even at 100 bar. There are several measurements, mainly from the 1970’s for bath 

gases N2, Ar, H2, He and CO. Baulch et al. [8] suggested an uncertainty parameter f = 0.3 for Ar 

bath gas in temperature range 500 2500 K. Davis et al. [15] also assumed f = 0.3 for N2 bath 

gas. We accepted the rate expression suggested by Kéromnès et al. [47] for N2 bath gas. The 

relative third body efficiencies with respect to N2 are given in the Supplementary Material. The 

uncertainty parameters fprior(T) suggested here change from 0.32 (1000 K) to 0.56 (2200 K).  

 

Reaction R17: CO +O2 = CO2 + O 

Few experimental data are available in either direction, since measurement of both the forward 

and the reverse rate coefficients is technically difficult. Davis et al. [15] reported uncertainty 

parameter f=0.5. All reviewers except for Kéromnès et al. [47] used the same set of Arrhenius 

parameters. We accepted the Arrhenius equation that was first suggested by Mueller et al. [64] as 

the mean rate expression. A constant uncertainty parameter fprior=0.7 defines a band that includes 

all review and experimental data.  

 

Reaction R18: H + O + M = OH + M (low-pressure limit) 

A single experimental expression is available for this rate coefficient based on the measurements 

of Javoy et al. [65]. Konnov [9] suggested f=0.5 for temperature range 2950  3700 K, using the 

estimated uncertainty of the Javoy et al. measurement. The 3rd body collision efficiency 

coefficients given in the various reviews were assigned without any experimental or theoretical 

background. Our mean rate coefficient expression is identical to those of Kéromnès et al. [47] 

and we assumed constant f=0.5 uncertainty parameter.  
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Reaction R19: H2O2 + OH = HO2 + H2O 

This reaction is important in the intermediate-temperature ignition of hydrocarbons and alcohols. 

Hong et al. [66] recently measured the rate coefficient in the temperature range of 1020  1460 

K. Hong et al. [67] also combined the obtained rate coefficients with room-temperature 

measurement data and described the temperature dependence of the rate coefficient in a wide 

range of temperatures by a double Arrhenius expression. They assigned uncertainty of 27 

(f=0.10). Previously Baulch et al. [8] and Konnov [9] suggested uncertainty parameter f=0.5 and 

f=0.3, respectively, for the temperature range 800  1700 K. The double Arrhenius expression of 

Hong et al. [67] was also accepted by Burke et al. [50] and Kéromnès et al. [47], and we also use 

this rate expression as the mean one. We assigned a more cautious fprior=0.3 constant in 

temperature range 800  2500 K. 

 

Reaction R20: HCO + O2 = HO2 + CO 

There are many measurements available, but mainly at room temperature and below 700 K. No 

reviewers have suggested an uncertainty parameter for this reaction. Most reviews and modelling 

studies use the experimental rate expression of Timonen et al. [68]. The mean rate coefficient 

expression used here is also based on their values and it is the identical to that of Kéromnès et al. 

[47]. We assumed constant f=0.3 uncertainty parameter, which includes most measured rate 

coefficients. 

 

Reaction R21: HCO +H → H2 +CO 

This is a radicalradical reaction and therefore near zero temperature dependence is expected. 

All reviewers suggested a single A-factor as an Arrhenius expression. The experimental data, 

available from 295 K to 2700 K, also indicate no temperature dependence for the rate coefficient. 

Baulch et al. [8] suggested uncertainty parameter f=0.3. We use the rate expression of Baulch et 

al. as the mean and an assumed temperature-independent f=0.5. The uncertainty band obtained 

includes all rate coefficient values. 

 

Reaction R22: CO + HO2 → CO2 + OH 

This reaction is important at high pressure (above 15 bar) and low temperature (below about 

1100 K), that is at the conditions of several RCM experiments [69]. Davis et al. [15] applied 

uncertainty parameter f=0.3. We use the rate expression of Kéromnès et al. [47] as the mean, 

which is based on the theoretical determination of You et al. [70]. Apart from the You et al. 
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article, very few and not recent experimental and theoretical rate determinations are available, 

and therefore we assumed temperature independent uncertainty f=0.7.  

 

 

7.4 Summary of the uncertainty information for the investigated elementary reactions 

 

The last paragraph of Section 7.2 described the tables and figures given in the Supplementary 

Material. This contains all raw information and also the derived covariance matrices and fprior 

functions for each reaction. To facilitate the application of these results in combustion modelling, 

the prior uncertainty information determined for the 22 reactions are summarized also in Tables 

2 and 3. The rows of Table 2 contain the chemical reactions and the mean Arrhenius parameters 

, n, . For reactions R5, R13, R14, R17, R18, R19, R20, R21 and R22, the uncertainty is 

characterized by = f  (ln 10) /3. In the case of these reactions (except for R21) a uniform 

probability density function is assumed. For the other reactions much more information is 

available, detailed in the Supplementary Material. For these reactions, uncertainty parameter 

values foriginal(Ti) and fextreme(Ti) were determined at every 100 K by programs u-Limits and 

UBAC, respectively. Using the program JPDAP, the fextreme(Ti) values were fitted and the 

parameters of the covariance matrix of the Arrhenius parameters are given in columns 7 to 12 of 

Table 2. Fig. 5 shows for each investigated reaction the fprior(T) calculated from the covariance 

matrix of the Arrhenius parameters.  

Reactions R2, R9, R10, R12, R16, and R18 are low-pressure limit reactions. The rate 

parameters of these reactions correspond to the 3rd body collision efficiency of N2. For these 

reactions, the 3rd body collision efficiencies for other bath gases (H2O, H2, Ar, He, O2, CO, and 

CO2), relative to N2, are given in Table 3. The table indicates mean relative collision efficiencies 

only for those elementary reactions where the rate information for different bath gases is 

available.  
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Fig. 5. Uncertainty fprior(T) curves for the investigated reactions. 
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Fig. 6. Scheme for the determination of the prior uncertainty of the Arrhenius parameters 

 

 

8. Conclusions 

 

A methodology was developed for the determination and efficient storage of the domain of 

uncertainty of the Arrhenius parameters of gas-phase elementary reactions. First, temperature-

dependent kmin and kmax values were selected at intervals of 100 K in such a way that these values 

provide a lower and an upper limit, respectively, of all recent measurements and theoretical 

determinations. Selecting a mean rate coefficient – temperature function, the limits were 

converted to uncertainty parameters foriginal at every investigated temperature. This procedure was 

assisted by program u-Limits, which makes the determination of the uncertainty band a 

semiautomatic process. The obtained T–foriginal data pairs may not be consistent with the 

temperature dependence of the rate coefficient. A calculation procedure and the corresponding 

computer code UBAC (the acronym of Uncertainty Band of Arrhenius Curves) was developed to 
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find the fextreme(T) curve that is consistent with the Arrhenius equation in the whole temperature 

interval. This curve can be used to define the domain of allowed Arrhenius parameters. The 

fextreme(T) curve can be well represented and thereby efficiently stored with the uncertainty curve 

fprior(T), which is parameterized with the covariance matrix p of the Arrhenius parameters, that 

has merely at most 6 non-zero parameters. The parameters of the covariance matrix can be 

calculated by program JPDAP (the acronym of Joint Probability Density of Arrhenius 

Parameters). Using program SAMAP, random sets of Arrhenius parameters having either a 

normal or a uniform distribution, can be generated. The rate coefficients calculated by these 

Arrhenius parameters are always within uncertainty limits fprior(T) in the whole temperature 

interval of evaluation. The logical structure of the procedure above is depicted in Fig. 6. 

This procedure was used for the analysis of 22 important elementary reactions of the H2 and 

syngas system. The collected data and the details of the calculations can be reproduced from the 

Supplementary Material. The summary of the numerical results and the qualitative assessment of 

the uncertainty of the rate coefficients of these reactions are given in the main text of the article. 

These data can be used for mechanism optimization and uncertainty quantification studies of 

hydrogen and syngas combustion models. 
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Appendix 1: Convexity and symmetry of the uncertainty domain of Arrhenius parameters 

 

This Appendix shows that the uncertainty domain of the Arrhenius parameters is always 

convex for both the 2-parameter and the 3-parameter Arrhenius expression cases. Also, it is 

proved that if the minimal and maximal (T) curves are symmetric around 0(T), then the 

uncertainty domain will also be symmetric around the mean set of Arrhenius parameters. 

The uncertainty domains defined for the rate coefficients at the three sampling temperatures 

are intervals, which are convex in 1D. The direct product of these intervals defines a rectangular 

box, which is a 3D domain and also convex: 

)](),([)](),([)](),([ 3high3low2high2low1high1low TTTTTT    (A1) 

Convexity of a domain means that all line segments connecting any two points of the domain go 

within the domain: 

high1ow)1( κκκ xxx          (0  x  1) (A2) 

A point of a line segment between points low ),,( low,3low,2low,1   and 

high ),,( high,3high,2high,1   in the  = ((T1), (T2), (T3)) space automatically fulfils the 

uncertainty constraints in , since each of its components for i= 1, 2, 3 fulfils it. This uncertainty 

constraint is   i
0
iixi ff  10ln  for i=1, 2, 3. 

The transformation between the  and p spaces is linear, since it requires the solution of the 

following system of linear equations: 
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A shorter notation for the equation above is Tpκ . Accordingly, the Arrhenius parameter 

vector can be calculated from the (Ti) values given at three different temperatures as κTp 1 . 

Multiplying the terms of equation (A2) with matrix 1T gives: 

high
1

low
11 )1( κTκTκT   xxx  (A4) 

It can be written as: 

highlow)1( ppp xxx   (A5) 

Due to the convexity of the 3D interval in , the calculated Arrhenius parameter set px will also 

be within the uncertainty domain of p, which implies that this domain is also convex.  
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Uncertainty limits at other temperatures will impose linear inequality constraints on the 

(Ti;p) values (see equation (3)), which correspond to linear inequality constraints for parameters 

p due to the linear relationship between  and p (see equation (2)). These linear inequality 

constraints define half-spaces in p, which correspond to truncation of the uncertainty domain by 

planes. The predefined limits for n are also linear inequality constraints (see equation (4)). Linear 

inequality constraints truncate the domain of a uniform distribution by planes, but do not affect 

convexity and evenness (see Appendix 2). The consequence is that while the extreme Arrhenius 

curves define the boundaries of the uncertainty domain of the Arrhenius curves, their parameters 

correspond to the vertices of the complex hull of the uncertainty domain of the Arrhenius 

parameters. 

The uncertainty boundaries in  are located symmetrically around the mean value at any three 

temperatures, therefore the constraints imposed by them in the space of parameters p will be also 

be symmetric with respect to mirroring through p0 due to the linear relationship between the 

spaces. Furthermore, applying symmetric constraints for n around n0 also will not affect the 

mirror symmetry of the uncertainty domain (see Appendix 2) around the central values, therefore 

mirror-symmetric multivariate distributions will lead to mean values p  which are equal to the 

central values p0.  

 

Appendix 2: Multivariate uniform distribution of the  values at three temperatures implies 

uniform distribution of the Arrhenius parameters 

 

Multivariate uniform distribution of the  values at three temperatures means that the 

probability density ()=((T1), (T2), (T3)) is constant within their corresponding 

uncertainty ranges. It is shown here that the Arrhenius parameters p obtained by solving equation 

(1) also have an uniform distribution within their uncertainty domain in the space of p, that is 

p(p)=p(,n,) probability density is constant.  

The transformation between variables p and κ is Tpκ  (see equation (A3) in Appendix 1), 

which is a linear, since matrices T and T-1 are constant. The transformation of probability 

densities between the two spaces is carried out by multiplying with determinant detT. 


ppppTp

p

κ
κκ

p

33

constant

3

)(

constant

33

constant

dd)(ddetddetd)( pp

p




 













 




 (A6) 



 

45 
 

Since () is constant, therefore p(p) is also constant. In other words, transformation (A6) 

changes the volume element evenly and leaves the probability density constant, thus it will 

transform uniform distribution in  into uniform distribution in p. 

 

 

Appendix 3: Transformation of a constrained parameter estimation problem to an equivalent 

unconstrained parameter estimation task 

 

Code JPDAP allows fitting of equations (6) and (7) and its simplified versions for 2 

Arrhenius parameters to the uncertainty values f. However, the following constraints also have to 

be considered: 0 ≤ , n,  , -1  rn, r, rn  1  and  nnnn rrrrrr 210 222  . These 

constraints are taken into account in an indirect way by reformulating the original problem to an 

equivalent, numerically more stable unconstrained parameter estimation task. The method is 

presented for the 3-parameter case only; the two-parameter cases are similar. 

The original parameters were the standard deviations and correlations of the Arrhenius 

parameters, subjected to constraints originated from the positive semi-definiteness and 

symmetric properties of the covariance matrix (p). This matrix has the following 

eigenvalueeigenvector decomposition:  

 

TOOΛΣp   (A7) 

 

Here  is the diagonal matrix of non-negative eigenvalues (i0), and O is an orthogonal matrix 

(OT=O-1) of the orthonormal eigenvectors oi. Thus the overall effect of the covariance matrix on 

a vector =(1, ln{T}, –{T}–1)T, can be considered as decomposition of the vector into 

components parallel with oi, multiplying each component with i, and finally adding them up. 

This transformation can also be seen as rotating vector  from the eigenvector frame (defined by 

oi’s) to Cartesian frame of ei’s (OT=e1o1
T+e2o2

T+e3o3
T), multiplying the Cartesian coordinates 

with non-negative i (=1e1e1
T+2e2e2

T +3e3e3
T), and finally rotating the vector back to 

Cartesian frame (O=o1e1
T+o2e2

T+o3e3
T). Here we assume that e1(e2e3)=o1(o2o3), that is the two 

set of basis vectors are of the same handed. 

The rotation angles (i, where i=1,…, N(N–1)/2 for N Arrhenius parameters), and the square 

root of the non-negative eigenvalues (i=i
2, where i=1,…, N) provide an unconstrained set of 
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parameters. This re-parameterization of equation (7) provides an expression for the standard 

deviation of the rate coefficient, which makes the determination of the covariance matrix 

straightforward as the new parameters can be varied freely, i.e. without constraints. 
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# reaction α0 n0 ε0 (K) T range: uncertainty reference assumed n 

1 H2O2+H→H2O+OH 30.813  1998 300–2500K: 0.4 
R14 in 

Section 7 
 

2 H+CH3H2+1CH2 37.076 –0.56 1350 
300–1000K: 0.15 

1000–1700K: 0.30 
1700–2500K: 0.20 

[8] 2 

 

Table 1. Data for the reactions used as examples. Parameter α0 is calculated with parameter A 

given in units mol, cm and s.  
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# reaction 0 n0 0 (K) ρp(p)  n (K) rn r rn T range (K) f range 

R1 H + O2  O + OH 32.964 –0.097 7560 N 5.272943 0.656768 800.271137 –0.999825 0.994015 –0.995883 800–2700 0.208–0.321 

R2LPL H + O2 + M  HO2 + M 44.724 –1.3 0 N 1.438236 0.223583 – –0.995378 – – 300–2000 0.180–0.397 

R3 O + H2  H + OH 10.832 2.67 3165 N 2.163163 0.270921 195.359196 0.998598 0.996922 0.999675 300  2500 0.152  0.210 

R4 OH + H2  H2O + H 19.195 1.52 1740 N 2.143215 0.286297 171.362012 –0.996541 0.991819 –0.977786 300-2500 0.103-0.308 

R5 H2O2 + H  H2 + HO2 23.791 1.00 3019 U 0.460517 – – – – – 300–2500 0.6 

R6 H + HO2  OH + OH 31.891 0 148 N 0.405607 – 97.899418 – 0.996676 – 500–2000 0.275–0.465 

R7 H + HO2  H2 + O2 15.113 2.09 –730 N 5.872579 0.706624 612.533182 –0.999948 0.993870 –0.994472 500–2000 0.277–0.529 

R8 HO2 + OH  H2O + O2 30.834 0 –250 N 2.663322 0.320701 230.310542 –0.989621 0.965621 –0.918243 500–2500 0.387–0.468 

R9HPL OH + OH  H2O2 (HPL) 32.236 –0.37 0 N 9.709683 1.263507 868.633251 –0.997625 0.899442 –0.867206 500–2000 0.408–0.703 

R9LPL OH+OH+M  H2O2 +M(LPL) 40.243 –0.84 –1792 N 5.844051 0.793676 537.397524 –0.996826 0.884678 –0.853167 500–2000 0.346–0.736 

R10LPL H + OH + M  H2O + M 58.938 –2.97 399 N 2.318687 0.341781 97.736146 –0.985119 0.483772 –0.326152 300–2500 0.299–0.706 

R11 OH + OH  H2O + O 10.419 2.42 –970 N 2.588877 0.347312 197.878874 –0.997980 0.999998 –0.998115 300–2500 0.177–0.347 

R12LPL H + H + M  H2 + M 39.164 –0.60 0 N 1.154390 0.219719 136.508852 –0.981868 –0.995224 0.958677 300–2500 0.376–0.759 

R13 HO2 + HO2  H2O2 + O2 
25.606 0 –820        300–800  

33.676 0 6030 U 0.307011 – – – – – 800–2500 0.4 

R14 H2O2 + H H2O + OH 30.813 0 1998 U 0.307011 – – – – – 300–2500 0.4 

R15 CO + OH  CO2 + H 12.315 1.90 –584 N 1.423152 0.207394 49.379834 –0.996044 –0.956388 0.926649 700–2500 0.189–0.310 

R16 HCO + M  H + CO + M 26.887 0.66 7483 N 4.517351 0.618292 292.154742 –0.999163 0.972233 –0.980992 300–2500 0.320–0.632 

R17 CO + O2  CO2 + O 28.559 0 24005 U 0.537270 – – – – – 300–2500 0.7 

R18LPL H + O + M  OH + M 42.996 –1.00 0 U 0.383764 – – – – – 300–2500 0.5 

R19 H2O2 + OH   HO2 + H2O 
28.185 0 160        300–800  

31.960 0 3658 U 0.230259 – – – – – 800–2500 0.3 

R20 HCO +O2  HO2 +CO 29.657 0 206 U 0.230259 – – – – – 300–2500 0.3 

R21 HCO +H  H2 +CO 32.134 0 0 N 0.383764 – – – – – 300–2500 0.5 

R22 CO + HO2  CO2 + OH 11.964 2.18 9028 U 0.537270 – – – – – 500–2500 0.7 
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Table 2 The mean Arrhenius parameters, the assumed probability distribution ρp(p) (Normal or Uniform), the parameters of the covariance 

matrix, the temperature range of validity and the range of uncertainty parameter fprior for each investigated elementary reaction. 

 

 

 

# reaction 
mean values range of uncertainty 

m(H2O) m(H2) m(Ar) m(He) m(O2) m(CO) m(CO2) m(H2O) m(H2) m(Ar) m(He) m(O2) m(CO) m(CO2) 
R2 H + O2 + M  HO2 + M 10 – 0.5 0.6 – – – 4–16 0.05–2.55 0.2–1.0 0.2–1.0 0.2–2.0 1.0–3.0 2.0–6.0 

R9LPL OH + OH + M  H2O2 + M(LPL) 8.33 – 1.49 – – – – 2.0–15.0 1.0–4.0 0.2–1.0 0.2–1.0 0.4–1.5 1.0–3.0 0.5–2.0 

R10 H + OH + M  H2O + M 6.45 – 0.38 – – – – 3–15 0.5–3.0 0.2–1.0 0.2–1.0 0.2–1.0 0.5–2.5 1.2–4.5 

R12 H + H + M  H2 + M 12 2.5 0.87 – – – – 8–16 0.8–4.2 0.5–2.0 0.5–2.0 0.5–1.5 1.0–3.0 2.0–4.5 

R16 HCO + M  H + CO + M – 2 1 1 – 1.75 – 4.0–18.0 1.5–3.0 0.5–1.5 0.5–1.5 0.5–1.5 1.0–3.0 1.5–4.5 

R18 H + O + M  OH + M 12 2.5 0.75 0.75 – – – 4.0–20.0 2.0–3.0 0.5–1.0 0.5–1.0 0.5–1.5 1.0–3.0 1.7–4.9 

 

Table 3 Summary of the mean values and range of uncertainty of the 3rd body collision efficiencies 

 


