86 research outputs found

    Machine-learned target volume delineation of 18F-FDG PET images after one cycle of induction chemotherapy

    Get PDF
    Biological tumour volume (GTVPET) delineation on 18F-FDG PET acquired during induction chemotherapy (ICT) is challenging due to the reduced metabolic uptake and volume of the GTVPET. Automatic segmentation algorithms applied to 18F-FDG PET (PET-AS) imaging have been used for GTVPET delineation on 18F-FDG PET imaging acquired before ICT. However, their role has not been investigated in 18F-FDG PET imaging acquired after ICT. In this study we investigate PET-AS techniques, including ATLAAS a machine learned method, for accurate delineation of the GTVPET after ICT. Twenty patients were enrolled onto a prospective phase I study (FiGaRO). PET/CT imaging was acquired at baseline and 3 weeks following 1 cycle of induction chemotherapy. The GTVPET was manually delineated by a nuclear medicine physician and clinical oncologist. The resulting GTVPET was used as the reference contour. The ATLAAS original statistical model was expanded to include images of reduced metabolic activity and the ATLAAS algorithm was re-trained on the new reference dataset. Estimated GTVPET contours were derived using sixteen PET-AS methods and compared to the GTVPET using the Dice Similarity Coefficient (DSC). The mean DSC for ATLAAS, 60% Peak Thresholding (PT60), Adaptive Thresholding (AT) and Watershed Thresholding (WT) was 0.72, 0.61, 0.63 and 0.60 respectively. The GTVPET generated by ATLAAS compared favourably with manually delineated volumes and in comparison, to other PET-AS methods, was more accurate for GTVPET delineation after ICT. ATLAAS would be a feasible method to reduce inter-observer variability in multi-centre trials

    Reflection and Remembrance: Oral histories and critical thinking

    Get PDF
    The research assignment for this class was to interview someone who lived through World War II. The interviewee could be someone who served in the military service, someone on the home front or even a child-anyone who was touched by the experience of World War II

    Association between hypoxic volume and underlying hypoxia-induced gene expression in oropharyngeal squamous cell carcinoma (OPSCC):Hypoxia biomarkers from 64Cu-ATSM PET/CT imaging

    Get PDF
    Background: Hypoxia imaging is a promising tool for targeted therapy but the links between imaging features and underlying molecular characteristics of the tumour have not been investigated. The aim of this study was to compare hypoxia biomarkers and gene expression in oropharyngeal squamous cell carcinoma (OPSCC) diagnostic biopsies with hypoxia imaged with 64Cu-ATSM PET/CT. Methods: 64Cu-ATSM imaging, molecular and clinical data were obtained for 15 patients. Primary tumour SUVmax, tumour to muscle ratio (TMR) and hypoxic volume were tested for association with reported hypoxia gene signatures in diagnostic biopsies. A putative gene signature for hypoxia in OPSCCs (hypoxic volume-associated gene signature (HVS)) was derived. Results: Hypoxic volume was significantly associated with a reported hypoxia gene signature (rho=0.57, P=0.045), but SUVmax and TMR were not. Immunohistochemical staining with the hypoxia marker carbonic anhydrase 9 (CA9) was associated with a gene expression hypoxia response (rho=0.63, P=0.01). Sixteen genes were positively and five genes negatively associated with hypoxic volume (adjusted P<0.1; eight genes had adjusted P<0.05; HVS). This signature was associated with inferior 3-year progression-free survival (HR=1.5 (1.0–2.2), P=0.047) in an independent patient cohort. Conclusions: 64Cu-ATSM-defined hypoxic volume was associated with underlying hypoxia gene expression response. A 21-gene signature derived from hypoxic volume from patients with OPSCCs in our study may be linked to progression-free survival

    Clusterin is an extracellular chaperone that specifically interacts with slowly aggregating proteins on their off-folding pathway

    Get PDF
    Clusterin is an extracellular mammalian chaperone protein which inhibits stress-induced precipitation of many different proteins. The conformational state(s) of proteins that interact with clusterin and the stage(s) along the folding and off-folding (precipitation-bound) pathways where this interaction occurs were previously unknown. We investigated this by examining the interactions of clusterin with different structural forms of α-lactalbumin, γ-crystallin and lysozyme. When assessed by ELISA and native gel electrophoresis, clusterin did not bind to various stable, intermediately folded states of α-lactalbumin nor to the native form of this protein, but did bind to and inhibit the slow precipitation of reduced α-lactalbumin. Reduction-induced changes in the conformation of α-lactalbumin, in the absence and presence of clusterin, were monitored by real-time 1H NMR spectroscopy. In the absence of clusterin, an intermediately folded form of α-lactalbumin, with some secondary structure but lacking tertiary structure, aggregated and precipitated. In the presence of clusterin, this form of α-lactalbumin was stabilised in a non-aggregated state, possibly via transient interactions with clusterin prior to complexation. Additional experiments demonstrated that clusterin potently inhibited the slow precipitation, but did not inhibit the rapid precipitation, of lysozyme and γ-crystallin induced by different stresses. These results suggest that clusterin interacts with and stabilises slowly aggregating proteins but is unable to stabilise rapidly aggregating proteins. Collectively, our results suggest that during its chaperone action, clusterin preferentially recognises partly folded protein intermediates that are slowly aggregating whilst venturing along their irreversible off-folding pathway towards a precipitated protein

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    HmuY Haemophore and Gingipain Proteases Constitute a Unique Syntrophic System of Haem Acquisition by Porphyromonas gingivalis

    Get PDF
    Haem (iron protoporphyrin IX) is both an essential growth factor and virulence regulator for the periodontal pathogen Porphyromonas gingivalis, which acquires it mainly from haemoglobin via the sequential actions of the R- and K-specific gingipain proteases. The haem-binding lipoprotein haemophore HmuY and its cognate receptor HmuR of P. gingivalis, are responsible for capture and internalisation of haem. This study examined the role of the HmuY in acquisition of haem from haemoglobin and the cooperation between HmuY and gingipain proteases in this process. Using UV-visible spectroscopy and polyacrylamide gel electrophoresis, HmuY was demonstrated to wrest haem from immobilised methaemoglobin and deoxyhaemoglobin. Haem extraction from oxyhaemoglobin was facilitated after oxidation to methaemoglobin by pre-treatment with the P. gingivalis R-gingipain A (HRgpA). HmuY was also capable of scavenging haem from oxyhaemoglobin pre-treated with the K-gingipain (Kgp). This is the first demonstration of a haemophore working in conjunction with proteases to acquire haem from haemoglobin. In addition, HmuY was able to extract haem from methaemalbumin, and could bind haem, either free in solution or from methaemoglobin, even in the presence of serum albumin
    corecore