34 research outputs found

    Empire Ultimate Expansion: Resonances and Covariances.

    Get PDF
    The EMPIRE code system is being extended to cover the resolved and unresolved resonance region employing proven methodology used for the production of new evaluations in the recent Atlas of Neutron Resonances. Another directions of Empire expansion are uncertainties and correlations among them. These include covariances for cross sections as well as for model parameters. In this presentation we concentrate on the KALMAN method that has been applied in EMPIRE to the fast neutron range as well as to the resonance region. We also summarize role of the EMPIRE code in the ENDF/B-VII.0 development. Finally, large scale calculations and their impact on nuclear model parameters are discussed along with the exciting perspectives offered by the parallel supercomputing

    Measurements of high-energy neutron-induced fission of (nat)Pb and (209)Bi

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe CERN Neutron Time-Of-Flight (n_TOF) facility is well suited to measure low cross sections as those of neutron-induced fission in subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors and a fragment coincidence method that allows us to identify the fission events. The present experiment provides first results for neutron-induced fission up to 1 GeV. Good agreement is found with previous experimental data below 200 MeV. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross sections is close to 1 GeV

    Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN - N-TOF

    Get PDF
    The 238U fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The 238U fission cross section has been measured relative to the 235U fission cross section at CERN - n-TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards

    Verification of R-matrix calculations for charged-particle reactions in the resolved resonance region for the 7^{7}Be system

    No full text
    International audienceR-matrix theory is used to describe nuclear reactions in the resolved resonance region. It uses information on bound states and low energy resonances to accurately parametrize cross sections on the resonances as well as the non-resonant background. Since the seminal work of Lane and Thomas (1958), the approach has been widely used to analyze experimental cross-section data in a broad range of fields spanning nuclear reaction dynamics, nuclear astrophysics, ion beam analysis and their applications. Different R-matrix codes have been developed and used in these different applications with very little communication among the developers or practitioners on the capabilities, achievements or limitations of the codes. A limited comparison among three R-matrix codes on neutron-induced reactions was performed by the International Atomic Energy Agency (IAEA) International Evaluation of Neutron Cross Section Standards project (2007). Since then, significant progress has been made in their implementation of the R-matrix algorithms, and R-matrix codes have enhanced capabilities. In this paper we present, for the first time, the results of a comprehensive effort to verify the most widely used R-matrix codes in the various fields of nuclear science and applications: AMUR, AZURE2, CONRAD, EDA, FRESCO, GECCCOS, and SAMMY. In addition to the description of the capabilities of the codes and their specifications, we discuss the results of a joint exercise which was coordinated by the International Atomic Energy Agency. The aim of the exercise was to compare calculations of charged-particle reaction cross sections for the light composite system7^{7}Be. The calculations were performed by the codes using identical input R-matrix parameters and other specifications and were limited to charged-particle channels

    Measurement of the neutron-induced capture-to-fission cross section ratio in <math><mmultiscripts><mi mathvariant="normal">U</mi><mprescripts/><none/><mn>233</mn></mmultiscripts></math> at LANSCE

    No full text
    International audienceThe neutron-induced capture-to-fission cross section ratio of U233 has been measured at the Los Alamos Neutron Science Center at Los Alamos National Laboratory in the energy range from 0.7 eV to 250 keV. The detector setup combines the Detector for Advanced Neutron Capture Experiments (DANCE) to measure γ rays generated from both capture and fission reactions, and the neutron detector array at DANCE to measure fission neutrons. This is the first measurement of the capture-to-fission ratio between 2 and 30 keV. The evaluations are in good agreement with the results in the resolved resonance region. In both the unresolved resonance region and the fast neutron region, a lower capture-to-fission ratio is obtained in this work from 10 to 150 keV compared to current evaluations, while good agreement with the experimental data and the evaluations is found above 150 keV. Statistical model calculations were performed to compare with the experimental data. Significantly reduced 〈Γγ〉 was required to reproduce the measured data
    corecore