394 research outputs found

    Development and evaluation of a building energy model integrated in the TEB scheme

    Get PDF
    The use of air-conditioning systems is expected to increase as a consequence of global-scale and urban-scale climate warming. In order to represent future scenarios of urban climate and building energy consumption, the Town Energy Balance (TEB) scheme must be improved. This paper presents a new building energy model (BEM) that has been integrated in the TEB scheme. BEM-TEB makes it possible to represent the energy effects of buildings and building systems on the urban climate and to estimate the building energy consumption at city scale (~10 km) with a resolution of a neighbourhood (~100 m). The physical and geometric definition of buildings in BEM has been intentionally kept as simple as possible, while maintaining the required features of a comprehensive building energy model. The model considers a single thermal zone, where the thermal inertia of building materials associated with multiple levels is represented by a generic thermal mass. The model accounts for heat gains due to transmitted solar radiation, heat conduction through the enclosure, infiltration, ventilation, and internal heat gains. BEM allows for previously unavailable sophistication in the modelling of air-conditioning systems. It accounts for the dependence of the system capacity and efficiency on indoor and outdoor air temperatures and solves the dehumidification of the air passing through the system. Furthermore, BEM includes specific models for passive systems, such as window shadowing devices and natural ventilation. BEM has satisfactorily passed different evaluation processes, including testing its modelling assumptions, verifying that the chosen equations are solved correctly, and validating the model with field data.French National Research Agency (ANR). MUSCADE project (ANR-09-VILL-003)European Commission Framework Program (FP7/2007–2013) (BRIDGE Project grant 211345

    The occupancy-abundance relationship and sampling designs using occupancy to monitor populations of Asian bears

    Get PDF
    Designing a population monitoring program for Asian bears presents challenges associated with their low densities and detectability, generally large home ranges, and logistical or resource constraints. The use of an occupancy-based method to monitor bear populations can be appropriate under certain conditions given the mechanistic relationship between occupancy and abundance. The form of the occupancy\u2013abundance relationship is dependent on species-specific characteristics such as home range size and population density, as well as study area size. To assess the statistical power of tests to detect population change of Asian bears, we conducted a study using a range of scenarios by simulating spatially explicit individual-based capture-recapture data from a demographically open model. Simulations assessed the power to detect changes in population density via changes in site-level occupancy or abundance through time, estimated using a standard occupancy model or a Royle-Nichols model, both with point detectors (representing camera traps). We used IUCN Red List criteria as a guide in selection of two population decline scenarios (20% and 50%), but we chose a shorter time horizon (10 years = 1 bear generation), meaning that declines were steeper than used for IUCN criteria (3 generations). Our simulations detected population declines of 50% with high power (>0.80) and low false positive rates (FPR: incorrectly detecting a decline) (<0.10) when detectors were spaced at > 0.67 times the home range diameter (home-range spacing ratio: HRSR, a measure of spatial correlation), such that bears would tend to overlap no more than two detectors. There was high (0.85) correlation between realized occupancy and N in these scenarios. The FPR increased as the HRSR decreased because of spatial correlation in the occupancy process induced when individual home ranges overlap multiple detectors. The mean statistical power to detect more gradual population declines (20% in 10 years) with HRSR > 0.67 was low for occupancy models 0.22 (maximum power 0.67) and Royle-Nichols models (0.24; maximum power 0.67), suggesting that declines of this magnitude may not be described reliably with 10 years of monitoring. Our results demonstrated that under many realistic scenarios that we explored, false positive rates were unacceptably high. We highlight that when designing occupancy studies, the spacing between point detectors be at least 0.67 times the diameter of the home range size of the larger sex (e.g., males) when the assumptions of the spatial capture-recapture model used for simulation are met

    The density of anthropogenic features explains seasonal and behaviour-based functional responses in selection of linear features by a social predator

    Get PDF
    Anthropogenic linear features facilitate access and travel efficiency for predators, and can influence predator distribution and encounter rates with prey. We used GPS collar data from eight wolf packs and characteristics of seismic lines to investigate whether ease-of-travel or access to areas presumed to be preferred by prey best explained seasonal selection patterns of wolves near seismic lines, and whether the density of anthropogenic features led to functional responses in habitat selection. At a broad scale, wolves showed evidence of habitat-driven functional responses by exhibiting greater selection for areas near low-vegetation height seismic lines in areas with low densities of anthropogenic features. We highlight the importance of considering landscape heterogeneity and habitat characteristics, and the functional response in habitat selection when investigating seasonal behaviour-based selection patterns. Our results support behaviour in line with search for primary prey during summer and fall, and ease-of-travel during spring, while patterns of selection during winter aligned best with ease-of-travel for the less-industrialized foothills landscape, and with search for primary prey in the more-industrialized boreal landscape. These results highlight that time-sensitive restoration actions on anthropogenic features can affect the probability of overlap between predators and threatened prey within different landscapes

    Median knock-down time as a new method for evaluating insecticide-treated textiles for mosquito control

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insecticide treated bed nets are major tools for the Roll Back Malaria campaign. There are two types of Long-Lasting Insecticide-treated Nets (LNs) on the market: coated nets and insecticide-incorporated nets. Nets provided to this market need a recommendation from the World Health Organization to be purchased by donors and NGOs. During laboratory study (phase I), the first step consists in evaluating the wash resistance of a new LN product. When insecticide-incorporated nets are washed, it takes time to regenerate the insecticidal activity, i.e. insecticide must migrate to the net surface to be accessible to mosquitoes. The interval of time required for regeneration must be carefully determined to ensure the accuracy of further results. WHOPES procedures currently recommend the determination of the regeneration time by using mortality data. However, as mortality cannot exceed 100%, a LN that regenerates a surface concentration exceeding the dosage for 100% mortality, will have its regeneration time underestimated.</p> <p>Methods</p> <p>The Median Knock Down Time (MKDT) was determined as function of insecticide dosage on an inert surface, glass, and on polyester nettings using an acetone solution or a simple emulsion. Dosage response was also established for mortality data. The same method was then applied to a commercially polyethylene netting, currently under WHOPES evaluation, to determine the dynamics of regeneration as function of repeated washings. The deltamethrin content of these nets was estimated by Capillary Gas Chromatography (GC-ECD).</p> <p>Results</p> <p>MKDT was a linear function of log insecticide dosage on glass as on nettings. Mortality data were either 0 or 100% for most concentrations except for a narrow range. MKDT was log linear function of total deltamethrin content in a commercial polyethylene net exposed to washings. The regeneration time of this net increased with the number of washes and MKDT became higher. A new, easy and rapid method to determine MKDT is suggested.</p> <p>Discussion</p> <p>The MKDT is linearly correlated to log dosage on a given substrate and shows no saturation as mortality data do. It is suited to determine regeneration time of a product that is exposed to a stress, like washing or heating, where the process impacts on the bio-availability of the insecticide. Mortality data are useful for measuring product efficacy, whereas MKDT are better to measure dynamics of surface concentration like regeneration after a stressing process. Change in MKDT can be used to illustrate the loss of insecticide due to washing, but the slope of the curve is product and surface-dependent.</p

    Programmable and arbitrary-trajectory ultrafast flying focus pulses

    Full text link
    "Flying focus" techniques produce laser pulses with dynamic focal points that travels distances much greater than a Rayleigh length. The implementation of these techniques in laser-based applications requires the design of optical configurations that can both extend the focal range and structure the radial group delay. This article describes a method for designing optical configurations that produce ultrashort flying focus pulses with arbitrary-trajectory focal points. The method is illustrated by several examples that employ an axiparabola for extending the focal range and either a reflective echelon or a deformable mirror-spatial light modulator pair for structuring the radial group delay. The latter configuration enables rapid exploration and optimization of flying foci, which could be ideal for experiments

    Urban energy exchanges monitoring from space

    Get PDF
    One important challenge facing the urbanization and global environmental change community is to understand the relation between urban form, energy use and carbon emissions. Missing from the current literature are scientific assessments that evaluate the impacts of different urban spatial units on energy fluxes; yet, this type of analysis is needed by urban planners, who recognize that local scale zoning affects energy consumption and local climate. However, satellite-based estimation of urban energy fluxes at neighbourhood scale is still a challenge. Here we show the potential of the current satellite missions to retrieve urban energy budget, supported by meteorological observations and evaluated by direct flux measurements. We found an agreement within 5% between satellite and in-situ derived net all-wave radiation; and identified that wall facet fraction and urban materials type are the most important parameters for estimating heat storage of the urban canopy. The satellite approaches were found to underestimate measured turbulent heat fluxes, with sensible heat flux being most sensitive to surface temperature variation (-64.1, +69.3 W m-2 for ±2 K perturbation); and also underestimate anthropogenic heat flux. However, reasonable spatial patterns are obtained for the latter allowing hot-spots to be identified, therefore supporting both urban planning and urban climate modelling

    The International Urban Energy Balance Models Comparison Project: First Results from Phase 1

    Get PDF
    A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no com- parison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling ap- proaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux
    corecore