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Abstract

In general insurance, the evaluation of future cash flows and sol-
vency capital has become increasingly important. To assist in this
process, the present paper proposes an individual discrete-time loss re-
serving model describing the occurrence, the reporting delay, the time
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to the first payment, and the cash flows associated with the settlement
process of each individual claim. The approach uses development fac-
tors similar to those of the standard chain-ladder method. These are
parametrically modeled by the Multivariate Skew Normal distribu-
tion. Empirical analyses using a realistic portfolio and out–of–sample
prediction tests demonstrate the relevance of the model proposed.

Keywords: Stochastic Loss Reserving, General Insurance, Multivari-
ate Skew Normal distribution, Chain-ladder

1 Introduction.

In a general insurance context, the typical evolution of a claim may be divided
into three parts. From the occurrence of the claim to its notification to the
insurance company, the insurer is liable for the claim amount but is unaware
of the claim’s existence. The claim is said to be Incurred But Not Reported
(IBNR). After notification, the claim is known by the company and there may
be few time units before the first payment is made. At this point, an initial
case estimate is evaluated by a claim handler. In this paper, such a claim will
be called Reported But Not Paid (RBNP). Then, the initial payment occurs
and several partial payments and refunds can follow. The claim is finally
closed at the closure date. From the first payment to the closure of the claim,
the insurer is aware of the existence of the claim, but the final amount is still
unknown: the claim is Reported But Not Settled (RBNS). This structure
provides a flexible framework which can be simplified or extended if needed.
The evolution of a general insurance claim is illustrated on a timeline in
Figure 1.

At a certain point in time, usually the end of the last completed period or
the first moment of the new one, an actuarial evaluation must be performed
and technical provisions have to be estimated. This moment will be called
the evaluation date. Loosely speaking, the insurer must predict, with max-
imum accuracy, the total amount needed to pay claims that he has legally
committed to cover. One part of the total amount comes from the completion
of Reported But Not Settled (RBNS) claims. Predictions for costs related
to Reported But Not Paid (RBNP) claims and Incurred But Not Reported
(IBNR) claims form the second part of the total amount. Both components
are summed up and a best estimate of the total amount is obtained.
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Figure 1: The evolution of a general insurance claim.

With the introduction of Solvency 2 (in 2012) and IFRS 4 Phase 2 (in
2013), the evaluation of future cash flows and regulatory required solvency
capital becomes more important and current techniques for loss reserving
may have to be improved, adjusted or extended. Generally, these claims re-
serving techniques are based on aggregated data, conveniently summarized
in a run-off triangle per accident year and per development year. Tables
6 and 7 below are examples of that kind of structure. The chain-ladder
approach (Mack’s model in Mack (1993) and Mack (1999)) is the most
popular member of this category. A rich literature exists about those tech-
niques and an overview can be found in England & Verrall (2002) or
Wüthrich & Merz (2008). However, using aggregated data in combina-
tion with the chain–ladder approach gives rise to several issues which are
enumerated in Antonio & Plat (2011). Many practical solutions have
been proposed, but they have not been applied simultaneously.

A mathematical framework for the development of individual claims was
formulated in the last decade of the 20th century by Arjas (1989), Norberg
(1993), Haastrup & Arjas (1996) and Norberg (1999). More recently,
a semi-parametric model (Zhao & Zhou & Wang (2009)) and a so–called
micro–model (Antonio & Plat (2011)) have been introduced. The model
developed in this paper is at the confluence of the latter and the chain-
ladder model. Instead of using the continuous timeline from Antonio &
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Plat (2011), a micro–level discrete stochastic structure is used to model the
occurrence times, the reporting delays, the first payment delays, the number
of payments for each claim and the number of periods between two subsequent
payments. The development pattern is modeled with a chain-ladder approach
in the framework of a multivariate distribution. The model will conduct to
an estimate of the total reserve and its distribution. Moreover, and unlike
aggregated approaches often used, it will provide individual predictions.

Our paper is organized as follows. The statistical model is introduced in
Section 2. In Section 3, the data are presented. These will be used in the
example discussed in Sections 4 and 5. Finally, Section 6 concludes. Some
technical developments have been gathered in two appendices, for the sake
of completeness.

2 The Model.

2.1 General Structure of the Data.

The data set should contain detailed information about the development of
individual claims. More specifically, the model will use:

• the occurrence date;

• the declaration date;

• the date(s) of payment(s) (and refund(s)) done for the claim;

• the amount(s) paid for the claim; and

• the closure date.

An extract of the data set used in Sections 4 and 5 is presented in Table 1.
The data set is from a European insurance company and concerns a portfolio
of general liability insurance policies for private individuals. More details
on the data can be found in Section 3. Developments of claims occur in a
continuous framework as is illustrated in Figures 2 and 3 for claims No 1567

and No 2680. In order to apply the actuarial model developped in this paper,
a time unit and an evaluation date have to be chosen and the data set must
be transformed with respect to these choices. In the example, a time unit
of one year is chosen and the transition from continuous micro–level data
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to discrete micro–level data for claims No 1567 and No 2680 is presented in
Figure 4.

Event No Date Amount
MM/DD/YY (discounted)

Occurrence 1567 06/10/1997 -
2680 01/03/1997 -

Declaration 1567 07/09/1997 -
2680 01/06/1997 -

Payments 1567 08/20/1997 32.76
1567 10/25/1997 16.32
1567 03/18/1998 608.02
2680 02/06/1997 135.84
2680 04/19/1997 45.99
2680 10/15/1997 313.60

Closure 1567 07/08/1998 -
2680 04/04/1998 -

Table 1: Development of two claims from the data set.

To enable comparisons between results from the model presented in this
paper and the classical Mack’s model, individual information can be summa-
rized on an annual basis and over groups of claims from the same accident
year. A run-off triangle as illustrated in Tables 6 and 7 presents the results.

2.2 Structure of the Model.

2.2.1 Time Structure.

The evolution of the kth claim from occurrence period i (the arrival period)
is modeled in a discrete framework with a four–component structure:

• the random variable Tik which is the reporting delay for claim (ik),
i.e. the difference between the occurrence period of the claim and the
period of its notification to the insurance company (for claim No 1567

and claim No 2680, the observed tik is 0);

• the random variable Qik, the first payment delay, which represents the
difference between the notification period and the first period with pay-
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Figure 2: Development of claim No 1567 in a continuous framework. The x-
axis represents the date of each event and the y-axis represents the cumulative
payment (“cum. pmt.”) for the claim.
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Figure 3: Development of the claim No 2680 in a continuous framework.
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Figure 4: Development of both claims in a discrete framework (annual).

ment (i.e. the first time unit(s) during which at least one payment oc-
curs) for claim (ik) (for claim No 1567 and claim No 2680, the observed
qik is 0 for both claims) ;

• the number of period(s) with partial payment after the first one is mod-
eled with the random variable Uik (for claim No 1567, the observed uik
is 1 and for claim No 2680, it is 0); and

• the delay between two periods with payment is modeled with the random
variable Nikj which represents the number of periods between payments
j and j + 1 and Nik =

∑
j Nikj, j = 1, 2, . . . (for claim No 1567, the

observed Nik is 1 and for claim No 2680, there is no variable Nik).

Each component is supposed to follow a discrete distribution f : N→ [0, 1],
respectively f1(t;ν), f2(q;ψ), f3(u; δ) and f4(n;φ). One should note that for
the delay between two consecutive periods with payment, Pr(Nikj = 0) = 0,
∀j. The time line of claim (ik) is illustrated in Figure 5.

2.2.2 Exposure and Occurrence Measures.

The stochastic model presented in this paper requires a measure of the in-
surer’s exposure to claims. The (inflation adjusted) earned premium is prob-
ably the most common measure used by both insurers and reinsurers when

7



0 tik tik + qik tik + qik + nik1
+ . . .+ nikuik

Occurrence

Notification

First payments Closure

Figure 5: The time line for claim (ik).

evaluating reserves, but written premium, number of policies in force, prop-
erty values, etc. can also be used. Let w(i) denote the exposure measure for
the occurrence period i, i = 1, . . . , I.

To distinguish explicitly between IBNR and RBNS/RBNP claims, an
occurrence measure must be defined. The number of claims for the occurrence
period i, Ki, is supposed to follow a Poisson process with occurrence measure
θw(i). However, since we are only able to observe reported claims, the Poisson
process should be filtered in the following way:

θw(i)F1(t
∗
i − 1;ν), (1)

where t∗i denotes the number of periods between the occurrence period i and
the evaluation date.

2.2.3 Development Structure.

Let the random variable Yikj represent the jth incremental partial amount
for the kth claim (k = 1, . . . , Ki) from the occurrence period i (i = 1, . . . , I).
The cumulative amount paid for claim (ik) is obtained by multiplying the
initial amount, Yik1, by one or more link ratios. The initial amount and the
vector of link ratio(s) form the development pattern of the claim. This ap-
proach is similar to the one used in the chain-ladder model (Mack’s model)
where the index j is for development period instead of partial payment. Us-
ing a development-to-development model in an individual framework can be
problematic because the length of the development pattern is supposed to be
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fixed and identical for all claims, and many development factors with a value
of 1 would unnecessarily be included. In the payment-to-payment approach
presented in the present paper, only development factors with non-one values
are modeled.

For a claim (ik) with a positive value of the random variable Uik, the

development pattern is given by the vector Λ(ik) =
[
Yik1 λ

(ik)
1 . . . λ

(ik)
uik

]′
,

where

λ
(ik)
j =

∑j+1
r=1 Yikr∑j
r=1 Yikr

,

for j = 1, . . . , uik. The development pattern of a claim (ik) is supposed to
follow a multivariate distribution M : Ruik+1 → [0, 1].

For claim No 1567 in the previous example, the initial amount is yik1 =
49.08 and the link ratio is given by

λ
(ik)
1 =

49.08 + 608.02

49.08
= 13.3883.

2.3 The Likelihood.

For the sake of clarity, the likelihood function will be divided into three parts:
an expression for the likelihood of closed, RBNP and RBNS claims.

Completed claims. For completed claims (C), the likelihood function is
given by

LC ∝
∏
ik

M(ln (λuik+1) ;µuik+1,Σ
1/2
uik+1,βuik+1|uik)

× f1(tik;ν|Tik ≤ t∗ik − 1)f2(qik;ψ|Qik ≤ t∗ik − tik − 1)

× f3(uik; δ|Uik ≤ t∗ik − qik − tik − 1)

× [I(uik = 0)(1)

+ I(uik ≥ 1)f4(nik1;φ|0 < Nik1 ≤ t∗ik − tik − qik − uik)

+ I(uik ≥ 2)

uik∏
j=2

f4

(
nikj;φ|0 < Nikj ≤ t∗ik − tik − qik − (uik − j + 1)−

j−1∑
p=1

nikp

)]
.

The first component of the likelihood function is the multivariate distribu-
tion for the development pattern, i.e. the initial amount and the vector of
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link ratio(s), given the total number of payment(s). For the distributions of
random variables involved in the time structure part of the function (T , Q, U
and N), a condition must be added to take into account the censoring of the
development at the evaluation date. More specifically, for completed claims
the whole development must be observed before the evaluation date.

As an example, at evaluation date 01/01/2004, claim No 1567 previously
presented contributes to the likelihood function in the following way:

L ∝M(ln(49.08, 13.3883);µ2,Σ
1/2
2 ,β2|U = 1)

× f1(0;ν|T ≤ 6)f2(0;ψ|Q ≤ 6)

× f3(1; δ|U ≤ 6)

× (1)f4(1;φ|0 < Nik1 ≤ 6),

with t∗ = 2004− 1997 = 7.

RBNS claims. For Reported But Not Settled claims (RBNS), the likeli-
hood expression is

LRBNS ∝
∏
ik

M(ln
(
λu∗ik+1

)
;µu∗ik+1Σ

1/2
u∗ik+1,βu∗ik+1|u∗ik)

× f1(tik;ν|Tik ≤ t∗ik − 1)f2(qik;ψ|Qik ≤ t∗ik − tik − 1)

× (1− F3(u
∗
ik − 1; δ))

× [I(u∗ik = 0)(1)

+ I(u∗ik ≥ 1)f4(nik1;φ|0 < Nik1 ≤ t∗ik − tik − qik − u∗ik)

+ I(u∗ik ≥ 2)

u∗ik∏
j=2

f4

(
nikj;φ|0 < Nikj ≤ t∗ik − tik − qik − (u∗ik − j + 1)−

j−1∑
p=1

nikp

) ,
where u∗ik represents the number of periods with payments after the first one
for the claim (ik).

RBNP claims. Finally, for Reported But Not Paid claims (RBNP), the
likelihood function is

LRBNP ∝
∏
ik

f1(tik;ν|Tik ≤ t∗ik − 1)(1− F2(t
∗
ik − tik − 1;ψ)).
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3 The Data.

3.1 Background.

The reserve model will be applied on a year by year basis to a data set from
a European insurance company and concerns a portfolio of general liabil-
ity insurance policies for private individuals. Available information is from
January 1997 till December 2003 except for exposure which is missing from
January 1997 to December 1999. Originally, information is available till Au-
gust 2009, but to enable out-of-sample prediction we remove the observations
from January 2004 to August 2009. The evaluation date is the first day of
January 2004.

The exposure measure used in the data set is not the number of policies
but the“earned”exposure which is the exposure units actually exposed to loss
during the period. As said previously, some part of the information about
exposure is missing for the period before January 2000, so the occurrence
measure is given from 2000 till 2004.

The paper focuses on paid claims and not on incurred losses (paid losses
plus case estimates) but incorporating information on incurred losses could
be a topic for future research. No claim handling expenses are assumed
in the data set since we had no information on expenses. The payments
are discounted to year 1997 with the annual Dutch consumer price index.
However, attention is paid in the model to the timing of the payments so the
insurer can adjust the estimations and/or predictions by applying a suitable
measure for inflation.

3.2 Descriptive Statistics.

A total of 279,094 claims are considered in the study and divided in two
categories of risk: 273,977 claims are related to Material Damage (MD) and
5,117 claims are related to Bodily Injury (BI). 1,156 open MD claims and
694 open BI claims are left. Note that a single claim can have a BI and a
MD part.

Occurrence of claims. Figure 6 presents the exposure per year which
appears to be be fairly linear.
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Figure 6: The exposure per year from 2000 to 2004.

Development pattern. For BI claims with exactly three payments, Figure
7 shows the dependence between the initial payment and the two development
factors (on log-scale). In Figure 8 the dependence is illustrated (on log-scale)
between the initial payment and the development factor for MD claims with
exactly two payments. In both figures, histograms illustrate the shape of the
marginal distribution of each variable. In both cases, the shape of the curve
illustrates the correlation between variables and the data display asymmetry.

Distributions for number of periods. For BI and MD claims, Figure 9
presents the reporting delay, Figure 10 presents the first payment delay and
Figure 11 presents the number of period(s) with payment after the first one.

4 Distributional Assumptions and Estimation

Results.

4.1 Distributional Assumptions.

In this section, distributional assumptions for each component of the likeli-
hood function ({Tik}, {Qik}, {Uik}, {Nik} and Λ(ik)) are discussed.
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Figure 7: Observed values for Bodily Injury claims (on log scale) with exactly
three payments (“pmt”).

Occurrence of claims. The random variable Ki representing the number
of claims with positive payment(s) for the occurrence period i is supposed to
follow a Poisson distribution with measure given by (1).
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Figure 8: Observed values for Material Damage claims (on log scale) with
exactly two payments (“pmt”).

Development pattern. In the stochastic version of the chain-ladder model
(Mack’s model), successive development factors are supposed to be non-
correlated given the past information. Moreover, there is no link between
the initial payment and the vector of development factors. If this hypoth-
esis may seem justified from an aggregated point of view, it becomes more
problematic in the individual framework presented in this paper.

In the model presented in the current paper, the development pattern,
i.e. the logarithm of the initial payment, Yik1, and the logarithm of the
vector of link ratios, is supposed to follow a Multivariate Skew Normal (MSN)
distribution which is introduced below. Some crucial properties and proofs
are deferred to Appendix A.

The Univariate Skew Normal distribution has been fragmentarily intro-
duced in Roberts & Geisser (1966), but the first formal definition and
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Figure 9: The reporting delay observed and estimated (broken line) for Bodily
Injury (left) and Material Damage (right).
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Figure 10: The first payment delay observed and estimated (broken line) for
Bodily Injury (left) and Material Damage (right).

systematic study of its properties appeared in the seminal work of Azzalini
(1985). A random variable X with probability density function given by

fX(x) = 2φ(x)Φ(βx), −∞ < x <∞,
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Figure 11: The number of period(s) with payment after the first one observed
and estimated (broken line) for Bodily Injury (left) and Material Damage
(right).

where φ(·), and Φ(·) are the pdf and the cdf of the standard Normal dis-
tribution, respectively, is called a Univariate Skew Normal (USN) random
variable with shape parameter β. If β = 0, fX(x) = φ(x) and if β → ±∞,
the USN density approaches the distribution of ± the absolute value of the
standard Normal distribution. It is a natural extension of the family of Nor-
mal distributions to situations where the assumption of symmetry is quite
unrealistic. Despite the absence of symmetry, many statistical properties of
the Normal distribution can be verified for the Skew Normal distribution.
The density of the USN random variable is exemplified in Figure 12.

Many extensions of the Univariate Skew Normal distribution to the mul-
tivariate case have been suggested by different authors (among others, see
Azzalini (1985) and Azzalini & Dalla Valle (1996)). The definition
retained in this paper comes from Gupta & Chen (2004) and Deniz (2009).

Let µ =
[
µ1 . . . µk

]′
be a location parameter, Σ be a (k × k) positive

definite symmetric scale matrix, β =
[
β1 . . . βk

]′
be a shape parameter.

The (k × 1) random vector X follows a Multivariate Skew Normal (MSN)
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Figure 12: The Univariate Skew Normal distribution with shape parameter
β = 0 (solid line), β = −3 (dashed line), β = 3 (dotted line) and β =
10,000,000 (dot-dashed line).

distribution if its density function is of the form

MSN
(
X;µ,Σ1/2,β

)
=

2k

det(Σ)1/2
φk

(
Σ−1/2 (X− µ)

)
×

k∏
j=1

Φ
(
βje

′
jΣ
−1/2 (X− µ)

)
,

where φk (·) denotes the pdf of the k-variate standard Normal distribution,
Φ(·) denotes the cdf of the Univariate standard Normal distribution and e′j
are the elementary vectors of the coordinate system Rk. One should note
that Σ is not the usual variance-covariance matrix as in the Multivariate
Normal distribution. A MSN random vector is defined by Σ1/2 in place of Σ
because of the plurality of the square roots of Σ. Without subscript, Σ1/2

designs the symmetric square root such that Σ = Σ1/2
(
Σ1/2

)′
, where Σ1/2

is a symmetric matrix.
This model can properly represent the dependence in the data as illus-

trated in Figures 7 and 8. Moreover, unlike the Multivariate Normal distri-
bution, the MSN distribution can take into account the asymmetric structure
of the data.
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Distributions for number of periods. For the reporting delay random
variable, a mixture of a Geometric distribution with few degenerate distri-
butions for notification during the first periods is considered, as suggested in
Antonio & Plat (2011). Moreover, a Geometric distribution is often used
to model tail factors in loss reserving models. The distribution is given by

f1(t;ν) =

p∑
i=0

νiIi(t) +

(
1−

p∑
i=0

νi

)
fT |T>p(t), (2)

where Ii = 1 for the ith period after occurrence time and Ii = 0 otherwise and
f(t) is the conditional probability mass function of the Geometric distribution
with parameter νp+1. Similar distributions are assumed for the number of
periods between the notification and the first payment, for the number of
periods with payment after the first one and for the number of period(s)
between two payments.

4.2 Estimation Results.

The model is fitted separately for both classes: Material Damage and Bodily
Injury. Data manipulations and likelihood optimization are performed with
R (using additional packages, among which package ChainLadder for Mack’s
model and package sn for Skew Normal distribution). Packages are available
from the CRAN website.

Occurrence of claims. The parameter of the distribution of the random
variable K (occurrence of claim) is estimated1 for each class and results are
θ̂BI = 0.7459 (s.e. 0.016) and θ̂MD = 38.89 (s.e. 0.112).

Development pattern. For the logarithm of the severity of the first and
only payment, a univariate Skew Normal distribution is fitted by maximum
likelihood and estimation results are presented in Table 2. A graphical com-
parison is presented in Figure 13. In this example, the shape parameter (α)
is unnecessary and a Normal distribution could be used instead.

For the logarithm of the severity of the first payment when there is more
than one payment, optimization has to be performed for each value of the
random variable U in each class of risk. Results are presented in Tables 3

1Actually, the exposure measure used in the estimation process is w(i)∗ = w(i)/1000.
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Parameter Bodily Injury (s.e.) Material Damage (s.e.)

µ 5.9168 (1.39) 4.9971 (0.18)
σ 1.3961 (0.02) 1.1636 (0.01)
α −0.0098 (1.25) 0.0313 (0.19)

Table 2: The estimation results for the logarithm of the severity of the first
payment in case there is only one payment.
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Figure 13: The histogram of severity of the first and only payment (on log
scale) and the density fitted using the Skew Normal distribution for Bodily
Injury (left) and Material Damage (right).

and 4. For the MSN distribution, several authors have reported problems
with maximum likelihood estimation, e.g. Pewsey (2000) and Azzalini
& Capitanio (1999). To deal with these problems, many methods have
been proposed (see Deniz (2009)). In this paper, the maximum products of
spacings estimation technique is used. More details are available in Appendix
B.

Given the low frequency of Bodily Injury claims with more than 5 pay-
ments (23 claims) and the low frequency of Material Damage claims with
more than 3 payments (6 claims), an annual tail factor of 20% is used to
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model the tail of the development. In the example, the impact of this tail
factor is negligible because of the low probabilities for the number of pay-
ments to be larger than these values (respectively 0.004 and 0.0000002).

Distributions for number of periods. For discrete random variables
{T}, {Q}, {U} and {N}, estimation results are presented in Table 5. As
defined in equation (2), a mixture of p + 1 degenerate distributions with
a Geometric distribution is used in each case. p + 2 parameters have to be
estimated for each variable. Observed and estimated results for the reporting
delay, the first payment delay and for the number of partial payments are
compared in Figures 9, 10 and 11.

5 Prediction Results.

Tables 6 and 7 summarize the database by arrival year and development
year in run-off triangles. In the data set, information for years 2005 to 2009
(August) is available but not used in the analysis to enable out-of-sample
prediction. Observed values for these years are presented in bold in run-off
triangles and sums are given in Table 8. In order to make comparisons, the
classical Mack model is fitted to both classes of risk and results are presented
in Table 8. Note that the run-off triangles reported here are different from
those used in Antonio & Plat (2011). These differences arise from the
definition of the risk class, i.e. Antonio & Plat (2011) define any claim
with at least one BI payment, to be a Bodily Injury. The present paper
allows a single claim to have both a BI and a MD part.

Predictions for the total reserve are obtained by the sum of the compo-
nents detailed in the following two Sections: IBNR and RBNP reserves on
the one hand and RBNS reserves on the other hand. Note that the simula-
tion approach presented here does not incorporate parameter uncertainty. In
future work the model will be adjusted to take this source of uncertainty into
account. However, to the best of our knowledge no straightforward method
is available to calculate standard errors corresponding with parameters es-
timated in the MSN distribution. In line with the findings in Antonio &
Plat (2011) it can be anticipated that the inclusion of parameter uncer-
tainty will have a minor impact on the variability of the reserves, given that
the statistical model is estimated on a large data set.
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5.1 Prediction of the IBNR and RBNP reserves.

For each occurrence period, the number of Incurred But Not Reported (IBNR)
claims in each class of risk is simulated by using a Poisson distribution with
occurrence measure given by

θ̂w(i)(1− F1(t
∗
i − 1; ν̂)).

Then, for each IBNR claim, say (ik), the number of period(s) with partial
payments {Uik} and the corresponding development pattern Λ(ik) are simu-
lated. Finally, the IBNR reserve is calculated. To know the timing of the
partial payments, each random variable, {Tik}, {Qik} and {Nikj}, has to be
simulated.

The prediction routine for the RBNP reserve is similar to the routine for
the prediction of the IBNR reserve except for the first step. Actually, RBNP
claims are reported claims and there is no need to simulate the number
of reported but not paid claims for each occurrence period. Moreover, the
variable {Qik} should be simulated from a truncated distribution, using the
condition Qik > t∗ik − tik − 1.

10,000 simulations are performed. Numerical results are presented in
Table 8 and graphical results are presented in Figure 14.

5.2 Prediction of the RBNS reserve.

The prediction routine for the RBNS reserve begins with the simulation of
the number of period(s) with payment by using the conditional probability
function f3(u|u ≥ u∗) where u∗ is the observed number of period(s) with pay-
ment after the first one. Then, the missing part of the development pattern
is simulated using the conditional distribution of the MSN distribution (see
result (ii) in the second Theorem presented in the Appendix A). Finally, the
RBNS reserve is evaluated.

10,000 simulations are performed: numerical results are presented in Ta-
ble 8 and graphical results are presented in Figure 15.

5.3 Discussion.

Table 8 summarizes results from both chain-ladder model and individual
MSN model. S.E. is the process standard error obtained from the simulations.
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Figure 14: The histogram of the reserve obtained for IBNR and RBNP claims
with the individual model for Bodily Injury (left) and Material Damage
(right).
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MD: RBNS claims reserve
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Figure 15: The histogram of the reserve obtained for RBNS claims with the
individual model for Bodily Injury (left) and Material Damage (right).

In addition, the Values–at–Risk2 with 95% and 99.5% confidence levels have

2The Value–at–Risk, or VaR is a well-known risk measure. In broad terms, the α-VaR
represents the loss that, with probability α will not be exceeded. Since that may not define
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been calculated. Lognormal distributions with expected values and variances
as obtained from Mack’s chain-ladder model have been fitted to calculate the
VaRs for Mack’s model. A graphical comparison is performed in Figure 16.
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MD: Total claims reserve
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Figure 16: The histogram of the total reserve obtained with the individual
model and the Lognormal density fitted on chain-ladder model for Bodily
Injury (left) and Material Damage (right). The vertical line represents the
observed total payment for years 2005 to 2009 (August).

For short-term and long-term insurance (MD and BI class respectively), best
estimates (expected values) of the reserve appear to be over-evaluated by the
chain-ladder model when compared to the MSN individual model. Moreover,
the MSN individual model presents a lower variance than the chain-ladder
model in both cases.

In each class, comparisons between the distribution of the total reserve
and the observed total amount, i.e. the total reserve up to the three unknown
years in the data set, are performed. Given that the lower triangle is almost
complete, the observed total payment in the lower triangle is probably very
close to the corresponding unobserved run-off. Note that the BI run-off
triangle in Table 6 shows a very large total payment in occurrence year 2002,

a unique value, for example if there is a probability mass around the value, the α-VaR
can be defined more specifically, for 0 ≤ α ≤ 1, as min{Q : Pr = (L ≤ Q) ≥ α}, where
L is the loss random variable. For continuous distributions this simplifies to Q such that
Pr (L ≤ Q) = α.
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development period 8. This is caused by a single, extreme payment of 779,398
euro. The MSN individual model reflects this appropriately, i.e. the observed
total amount is in the right tail of the predictive distribution obtained from
the model. Thus, for the case-study under consideration, the individual
model leads to a more realistic predictive distribution of the reserve than the
one obtained from the chain-ladder model.

6 Conclusions.

The present paper has proposed a discrete-time individual reserving model in-
spired from the well-known chain-ladder approach. The case study performed
on a general liability insurance portfolio of an insurance company operating
in the EU has demonstrated the usefulness of the modeling of individual claim
developments. Risk measures, including VaR, are easily calculated and can
be used for solvency evaluations. Also, the impact of reinsurance treaties can
be effectively taken into account using our individual model.

Several directions for future research can be enumerated. The simulation
approach used in Section 5 did not include parameter uncertainty, and could
be adjusted for this source of uncertainty. The modeling of the first payment
could be refined and adjusted to large losses, using the Lognormal-Pareto
distribution (see Pigeon & Denuit (2011)). More careful modeling of in-
flation effects and including the “time value of money” will be important in
future research. Studying the approach in light of the new solvency guide-
lines, is another path to be explored, as well as extending the model to the
reinsurance industry.
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Appendix A.

Moments of the Multivariate Skew Normal distribution.

The moment-generating function of X evaluated at t (k × 1) is

M(t) = 2k exp
(
t′µ+ 0.5t′Σ1/2(Σ1/2)′t

) k∏
j=1

Φ

βj
(

(Σ1/2)′t
)
j√

1 + β2
j

 .

The expectation vector is given by

E (X) =

√
2

π
Σ1/2


β1√
1+β2

1

. . .
βk√
1+β2

k

+ µ,

and the covariance matrix is given by

Cov (X) = Σ1/2

(
Ik −

2

π
diag

(
β2
1

1 + β2
1

, . . . ,
β2
k

1 + β2
k

))
(Σ1/2)′.

Properties of the Multivariate Skew Normal distribu-
tion.

Following proofs are based on Deniz (2009).

Theorem 1: Closure under linear transformation.

Assume that the random vector X follows a Multivariate Skew Normal dis-
tribution with location parameter µ (k × 1), scale parameter Σ1/2 (k × k)
and shape parameter β (k × 1) and define Y = AX + b with A a (k × k)
matrix and b a (k× 1) real vector. Then Y follows a MSN distribution with
parameters Aµ+ b, AΣ1/2 and β.
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Proof. The moment-generating function of Y evaluated at t ∈ Rk is

MY(t) = E
(
et′Y

)
= et′bMX(A′t)

= 2ket′(Aµ+b)+0.5t′(AΣ1/2)(AΣ1/2)′t

×
k∏
j=1

Φ

βj
(

(AΣ1/2)′t
)
j√

1 + β2
j

 ,

which is the moment-generating function of a MSN random vector with pa-
rameters Aµ+ b, AΣ1/2 and β).

Lemma 1

Let X be a (k × 1) random vector following a Multivariate Skew Normal
distribution with parameters µ, Σ1/2 and β as defined previously. Let

X =

[
X1

X2

]
µ =

[
µ1

µ2

]
β =

[
β1

β2

]
Σ1/2 =

[
Σ

1/2
11 Σ

1/2
12

Σ
1/2
21 Σ

1/2
22

]
,

where X1, β1 and µ1 are l × 1 (l < k) and Σ
1/2
11 is l × l. If Σ

1/2
12 = 0

and Σ
1/2
21 = 0 then X1 ∼ MSN

(
µ1,Σ

1/2
11 ,β1

)
is independant of X2 ∼

MSN
(
µ2,Σ

1/2
22 ,β2

)
.

Proof. If Σ
1/2
12 = 0 and Σ

1/2
21 = 0, then

Σ−1/2 =

[
Σ
−1/2
11 0

0 Σ
−1/2
22

]
.

The quadratic form in the exponent of the MSN distribution can be expressed
as

(X− µ)′Σ−1(X− µ) = (X1 − µ1)
′Σ−111 (X1 − µ1)

+ (X2 − µ2)
′Σ−122 (X2 − µ2)
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and
k∏
j=1

Φ
(
βje

′
jΣ
−1/2(X− µ)

)
=

l∏
j=1

Φ
(
βje

′
jΣ
−1/2
11 (X1 − µ1)

)
×

k∏
j=l+1

Φ
(
βje

′
jΣ
−1/2
22 (X2 − µ2)

)
Moreover,

det (Σ) = det (Σ11) det (Σ22) .

So, the probability density function of X can be written as

MSN
(
µ,Σ1/2,β

)
=

2l

det (Σ11)
1/2
φl

(
Σ
−1/2
11 (X1 − µ1)

)
×

l∏
j=1

Φ
(
βje

′
jΣ
−1/2
11 (X1 − µ1)

)
× 2k−l

det (Σ22)
1/2
φk−l

(
Σ
−1/2
22 (X2 − µ2)

)
×

k∏
j=l+1

Φ
(
βje

′
jΣ
−1/2
22 (X2 − µ2)

)
= MSN

(
µ1,Σ

1/2
11 ,β1

)
MSN

(
µ2,Σ

1/2
22 ,β2

)
.

Theorem 2: Conditional distribution.

Let X be a (k× 1) random vector following a Multivariate Skew Normal
distribution with parameters µ, Σ1/2

c and β. Σ1/2
c is the square root of the

matrix Σ by Cholesky decomposition3. Let

X =

[
X1

X2

]
µ =

[
µ1

µ2

]
Σ1/2
c =

[
A11 0
A21 A22

]
β =

[
β1

β2

]
,

3If Σ is a positive definite symmetric matrix of size k, there exists a unique lower
triangular matrix L with positive diagonal elements such that Σ = LL′. This is called the
Cholesky decomposition of the matrix Σ and L is the Cholesky square root of the matrix.
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where X1, β1 and µ1 are l×1 (l < k), A11 is l×l lower triangular matrix with
positive diagonal elements and A22 is (k− l)× (k− l) lower triangular matrix
with positive diagonal elements. Then (i) X1 has a Multivariate Skew Normal
distribution with parameters µ1, A11 and β1 and (ii) (X2|X1 = x1) has a
Multivariate Skew Normal distribution with parameters µ2 + A21A

−1
11 (x1 −

µ1), A22 and β2.

Proof. Let

C =

[
1l 0

−A21A
−1
11 1k−l

]
and consider the random vector

Y = CX =

[
X1

Y2

]
.

The random vector Y follows a MSN distribution with parameters Cµ,
CΣ1/2 and β. From Lemma 1, X1 is independant of Y2 which both be-
long in the MSN family. The joint distribution of Y is

MSN (µ1,A11,β1) MSN
(
µ2 −A21A

−1
11 µ1,A22,β2

)
.

Note that X2 = Y2 + A21A
−1
11 X1 and by Theorem 1, the distribution of

(X2|X1) is MSN with parameters µ2 + A21A
−1
11 (x1 − µ1), A22 and β2.

Appendix B.

Stochastic representation of the Univariate Skew Nor-
mal distribution.

The USN distribution has a convenient stochastic representation which will
be useful for simulations. Let Xi and Yi be two independent random variables
with standard Normal distributions. For βi ∈ R, the random variable

Zi =

(
βi√

1 + β2
i

)
| Xi |+

(
1√

1 + β2
i

)
Yi (3)

follows a Univariate Skew Normal distribution with shape parameter βi (a

proof can be found in Deniz (2009)). The random vector Z =
[
Z1 . . . Zk

]′
has a MSN distribution with 0 location vector, identity scale matrix and
β =

[
β1 . . . βk

]′
shape parameter. By using Theorem 1, a MSN random

vector with µ, Σ1/2 and β can be obtained.
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The maximum products of spacings estimation tech-
nique.

Let X = {x(1), . . . , x(n)} be an ordered random sample from the distribution
Fθ0(x) which belongs to a family F = {Fθ(x) : θ ∈ Θ} where the parameter θ
may be vector-valued. fθ(x) is the probability density function corresponding
to Fθ(x). The maximum likelihood estimator arises from the maximization
of the function

l(X; θ) =
1

n

n∑
i=1

ln
(
fθ(x(i))

)
.

The maximum products of spacings estimator arises from the maximization
of the function

sl(X; θ) =
1

n+ 1

n+1∑
i=1

ln
(
Fθ(x(i))− Fθ(x(i−1))

)
,

with Fθ(x0) = 0 and Fθ(x(n+1)) = 1. Under very general conditions, both
estimators are asymptotically equivalent (see Cheng & Amin (1983)).

The following methodology is applied to estimate parameters µ, Σ and
β of order k from a random sample Y = {y1, . . . , yn}:

a) Let β0 be a initial estimate for β.

b) Given an estimate of β, estimate Σ1/2
c and µ by method of moments

Σ̂1/2
c = S1/2

c

(
Ik −

(
2

π

)
diag

(
β2
1

1 + β2
1

, . . . ,
β2
k

1 + β2
k

))−1/2

µ̂ = Ȳ − Σ̂1/2
c


√
2β1√

π
√

1+β2
1

. . .√
2βk√

π
√

1+β2
k

.


c) Given an estimate of µ and Σ, define Xi = Σ−1/2c (Yi − µ) with uni-

variate i.i.d. distributions MSN(0, 1, βj), j = 1, . . . , k and estimate
components βj of β by maximum products of spacings estimation.

d) Repeat b) and c) until convergence.
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Number of pmt after Location par. (µ) Scale par. (Σ) Shape par. (β)
the first one (U)

U = 1 µ1 = 5.6019 σ11 = 2.1722 β1 = 0.2134
µ2 = 0.5664 σ22 = 2.4442 β2 = 2.5263

σ12 = −0.9495

µ1 = 6.3406 σ11 = 2.4008 β1 = 0.0056
µ2 = 0.1885 σ22 = 1.8621 β2 = 3.1828

U = 2 µ3 = 0.5845 σ33 = 1.9804 β3 = 86.6838
σ12 = −0.6288
σ13 = −0.6865
σ23 = −0.5516

µ1 = 4.4631 σ11 = 7.2241 β1 = 38.7554
µ2 = 0.9787 σ22 = 2.4592 β2 = 2.2285
µ3 = 0.4082 σ33 = 1.0268 β3 = 4.0688
µ4 = 1.1512 σ44 = 0.4742 β4 = 0.0384

U = 3 σ12 = −2.7370
σ13 = −0.8189
σ14 = 0.0998
σ23 = −0.1371
σ24 = 0.0145
σ34 = −0.2451

µ1 = 6.9951 σ11 = 2.4487 β1 = −0.0219
µ2 = 1.1287 σ22 = 0.9936 β2 = 0.0505
µ3 = −0.1187 σ33 = 0.4695 β3 = 5.7102
µ4 = −0.0980 σ44 = 0.4383 β4 = 7.3448
µ5 = 1.3499 σ55 = 0.5898 β5 = 0.0007

U = 4 σ12 = −0.7031
σ13 = −0.2317
σ14 = −0.1836
σ15 = −0.4310
σ23 = −0.0451
σ24 = 0.0173
σ25 = −0.0379
σ34 = −0.0024
σ35 = −0.1412
σ45 = −0.2273

Table 3: The estimation results for logarithms of development factors for
Bodily Injury claims with more than one period with payment.
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Number of pmt after Location par. (µ) Scale par. (Σ) Shape par. (β)
the first one (U)

U = 1 µ1 = 5.7733 σ11 = 4.0848 β1 = 4.8548
µ2 = 1.2253 σ22 = 2.2893 β2 = 2.5429

σ12 = −2.1815

µ1 = 6.0698 σ11 = 2.6104 β1 = 0.0187
µ2 = 1.8193 σ22 = 3.0916 β2 = 0.0590

U = 2 µ3 = 0.7243 σ33 = 0.5071 β3 = −0.0004
σ12 = −1.9334
σ13 = −0.8542
σ23 = 0.6764

Table 4: The estimation results for logarithms of development factors for
Material Damage claims with more than one period with payment.
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Class i Report delay First pmt delay Number partial pmt Time between pmt
(T ; νi) (Q;ψi) (U ; δi) (N ;φi)

(s.e.) (s.e.) (s.e.) (s.e.)

0 0.8961 0.7273 0.6409 0.8825
(0.005) (0.007) (0.008) (0.009)

1 0.0774 0.2384 0.5947 0.5604
(0.004) (0.007) (0.012) (0.021)

BI 2 0.0139 0.0225 - -
(0.002) (0.002) - -

3 0.3585 0.5972 - -
(0.010) (0.090) - -
p = 2 p = 2 p = 0 p = 0

0 0.9626 0.9298 0.9908 0.9857
(< 0.001) (< 0.001) (< 0.001) (< 0.001)

1 0.0362 0.0680 0.9754 0.268
(< 0.001) (< 0.001) (0.004) (0.003)

MD 2 0.0008 0.0015 - -
(< 0.001) (< 0.001) - -

3 0.7263 0.5785 - -
(0.030) (0.024) - -
p = 2 p = 2 p = 0 p = 0

Table 5: The estimation results for a Geometric distribution, combined with
degenerate components.
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Arrival Development year
year 1 2 3 4 5 6 7 8

1997 261 614 359 526 546 137 130 339
1998 202 473 307 336 269 56 179 78
1999 238 569 393 270 249 286 132 97
2000 237 557 429 496 406 365 247 275
2001 389 628 529 559 446 375 147 239
2002 260 570 533 444 132 122 332 1,082
2003 236 743 558 237 217 205 171
2004 248 794 401 236 254 98

Table 6: The incremental run-off triangle for the Bodily Injury class (in
thousands).

Arrival Development year
year 1 2 3 4 5 6 7 8

1997 4,427 992 89 13 39 27 37 11
1998 4,389 984 60 35 76 24 0.5 16
1999 5,280 1,239 76 110 113 12 0.4 0
2000 5,445 1,164 172 16 6 10 0 10
2001 5,612 1,838 156 127 13 3 0.4 3
2002 6,593 1,592 74 71 17 15 9 9
2003 6,603 1,660 150 52 37 18 3
2004 7,195 1,417 109 86 39 15

Table 7: The incremental run-off triangle for the Material Damage class (in
thousands).
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Model Class Expected value S.E. VaR0.95 VaR0.995

Chain-ladder BI 9,082,114 1,184,546 11,150,686 12,583,834
model MD 3,024,375 411,507 3,744,588 4,247,807

Ind. MSN BI 1,666,000 389,124 2,330,317 3,437,898
(IBNR + RBNP) MD 2,062,000 115,335 2,272,556 2,411,647

Ind. MSN BI 4,895,000 668,333 6,055,026 7,110,197
(RBNS) MD 40,430 34,065 93,585 234,049

Ind. MSN BI 6,560,000 779,120 7,918,944 9,152,913
(TOTAL) MD 2,102,000 120,109 2,318,484 2,480,923

Observed BI 7,684,000 - - -
Payment MD 2,102,800 - - -

Table 8: The estimated reserves. The reserves “Ind. MSN (TOTAL)” and
“Chain-ladder” are both for the complete lower triangle including missing
cells. The “Observed Payment” is only for years 2004 to 2009 (August).
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