3,222 research outputs found

    Fe-MOF Materials as Precursors for the Catalytic Dehydrogenation of Isobutane.

    Get PDF
    We investigate the use of a series of iron-based metal-organic frameworks as precursors for the manufacturing of isobutane dehydrogenation catalysts. Both the as-prepared and spent catalysts were characterized by PXRD, XPS, PDF, ICP-OES, and CHNS+O to determine the physicochemical properties of the materials and the active phases responsible for the catalytic activity. In contrast to the previous literature, our results indicate that (i) the formation of metallic Fe under reaction conditions results in secondary cracking and coke formation; (ii) the formation of iron carbide only contributes to coke formation; and (iii) the stabilization of the Fe2+ species is paramount to achieve stable and selective catalysts. In this sense, promotion with potassium and incorporation of titanium improve the catalytic performance. While potassium is well known to improve the selectivity in iron-catalyzed dehydrogenation reactions, the unprecedented effect of titanium in the stabilization of a nanometric titanomaghemite phase, even under reductive reaction conditions, results in a moderately active and highly selective catalyst for several hours on stream with a remarkable resistance to coke formation

    Tissue iron distribution assessed by MRI in patients with iron loading anemias

    Get PDF
    Bone marrow, spleen, liver and kidney proton transverse relaxation rates (R2), together with cardiac R2* from patients with sickle cell disease (SCD), paroxysmal nocturnal hemoglobinuria (PNH) and non-transfusion dependent thalassemia (NTDT) have been compared with a control group. Increased liver and bone marrow R2 values for the three groups of patients in comparison with the controls have been found. SCD and PNH patients also present an increased spleen R2 in comparison with the controls. The simultaneous measurement of R2 values for several tissue types by magnetic resonance imaging (MRI) has allowed the identification of iron distribution patterns in diseases associated with iron imbalance. Preferential liver iron loading is found in the highly transfused SCD patients, while the low transfused ones present a preferential iron loading of the spleen. Similar to the highly transfused SCD group, PNH patients preferentially accumulate iron in the liver. A reduced spleen iron accumulation in comparison with the liver and bone marrow loading has been found in NTDT patients, presumably related to the differential increased intestinal iron absorption. The correlation between serum ferritin and tissue R2 is moderate to good for the liver, spleen and bone marrow in SCD and PNH patients. However, serum ferritin does not correlate with NTDT liver R2, spleen R2 or heart R2*. As opposed to serum ferritin measurements, tissue R2 values are a more direct measurement of each tissue's iron loading. This kind of determination will allow a better understanding of the different patterns of tissue iron biodistribution in diseases predisposed to tissue iron accumulation

    NectarCAM : a camera for the medium size telescopes of the Cherenkov Telescope Array

    Full text link
    NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) covering the central energy range of ~100 GeV to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and a 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 8 degrees. Each module includes the photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and Ethernet transceiver. The recorded events last between a few nanoseconds and tens of nanoseconds. The camera trigger will be flexible so as to minimize the read-out dead-time of the NECTAr chips. NectarCAM is designed to sustain a data rate of more than 4 kHz with less than 5\% dead time. The camera concept, the design and tests of the various subcomponents and results of thermal and electrical prototypes are presented. The design includes the mechanical structure, cooling of the electronics, read-out, clock distribution, slow control, data-acquisition, triggering, monitoring and services.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Assessing the dynamics of organic aerosols over the North Atlantic Ocean

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 7 (2017): 45476, doi:10.1038/srep45476.The influence of aerosols on climate is highly dependent on the particle size distribution, concentration, and composition. In particular, the latter influences their ability to act as cloud condensation nuclei, whereby they impact cloud coverage and precipitation. Here, we simultaneously measured the concentration of aerosols from sea spray over the North Atlantic on board the exhaust-free solar-powered vessel “PlanetSolar”, and the sea surface physico-chemical parameters. We identified organic-bearing particles based on individual particle fluorescence spectra. Organic-bearing aerosols display specific spatio-temporal distributions as compared to total aerosols. We propose an empirical parameterization of the organic-bearing particle concentration, with a dependence on water salinity and sea-surface temperature only. We also show that a very rich mixture of organic aerosols is emitted from the sea surface. Such data will certainly contribute to providing further insight into the influence of aerosols on cloud formation, and be used as input for the improved modeling of aerosols and their role in global climate processes.We gratefully acknowledge the financial support by the H. Dudley Wright and the Henri Moser Foundations, the Rector’s Office and the Institute for Environmental Sciences at the University of Geneva, as well as a generous anonymous donator

    The energy calibration of LEP in the 1993 scan

    Get PDF
    This report summarizes the procedure for providing the absolute energy calibration of the LEP beams during the energy scan in 1993. The average beam energy around the LEP ring was measured in 25 calibrations with the resonant depolarization technique. The time variation of this average beam energy is well described by a model of the accelerator based on monitored quantities. The absolute calibration of the centre of mass energies of the off-peak points is determined with a precision of 2 parts in 10(5) resulting in a systematic error on the Z-mass of about 1.4 MeV and on the Z-width of about 1.5 MeV

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201
    • 

    corecore