1,075 research outputs found

    Free jet feasibility study of a thermal acoustic shield concept for AST/VCE application: Single stream nozzles

    Get PDF
    A technology base for the thermal acoustic shield concept as a noise suppression device for single stream exhaust nozzles was developed. Acoustic data for 314 test points for 9 scale model nozzle configurations were obtained. Five of these configurations employed an unsuppressed annular plug core jet and the remaining four nozzles employed a 32 chute suppressor core nozzle. Influence of simulated flight and selected geometric and aerodynamic flow variables on the acoustic behavior of the thermal acoustic shield was determined. Laser velocimeter and aerodynamic measurements were employed to yield valuable diagnostic information regarding the flow field characteristics of these nozzles. An existing theoretical aeroacoustic prediction method was modified to predict the acoustic characteristics of partial thermal acoustic shields

    Operationalising FRAM in Healthcare: A critical reflection on practice

    Get PDF
    Resilience Engineering principles are becoming increasingly popular in healthcare to improve patient safety. FRAM is the best-known Resilience Engineering method with several examples of its application in healthcare available. However, the guidance on how to apply FRAM leaves gaps, and this can be a potential barrier to its adoption and potentially lead to misuse and disappointing results. The article provides a self-reflective analysis of FRAM use cases to provide further methodological guidance for successful application of FRAM to improve patient safety. Five FRAM use cases in a range of healthcare settings are described in a structured way including critical reflection by the original authors of those studies. Individual reflections are synthesised through group discussion to identify lessons for the operationalisation of FRAM in healthcare. Four themes are developed: (1) core characteristics of a FRAM study, (2) flexibility regarding the underlying epistemological paradigm, (3) diversity with respect to the development of interventions, and (4) model complexity. FRAM is a systems analysis method that offers considerable flexibility to accommodate different epistemological positions, ranging from realism to phenomenology. We refer to these as computational FRAM and reflexive FRAM, respectively. Prac-titioners need to be clear about their analysis aims and their analysis position. Further guidance is needed to support practitioners to tell a convincing and meaningful "system story" through the lens of FRAM

    Preparation, structural characterisation and antibacterial properties of Ga-doped sol-gel phosphate-based glass

    Get PDF
    A sol-gel preparation of Ga-doped phosphate-based glass with potential application in antimicrobial devices has been developed. Samples of composition (CaO)(0.30)(Na2O)(0.20-x) (Ga2O3) (x) (P2O5)(0.50) where x = 0 and 0.03 were prepared, and the structure and properties of the gallium-doped sample compared with those of the sample containing no gallium. Analysis of the P-31 MAS NMR data demonstrated that addition of gallium to the sol-gel reaction increases the connectivity of the phosphate network at the expense of hydroxyl groups. This premise is supported by the results of the elemental analysis, which showed that the gallium-free sample contains significantly more hydrogen and by FTIR spectroscopy, which revealed a higher concentration of -OH groups in that sample. Ga K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure data revealed that the gallium ions are coordinated by six oxygen atoms. In agreement with the X-ray absorption data, the high-energy XRD results also suggest that the Ga3+ ions are octahedrally coordinated with respect to oxygen. Antimicrobial studies demonstrated that the sample containing Ga3+ ions had significant activity against Staphylococcus aureus compared to the control

    Span of control in supervision of rail track work

    Get PDF
    The supervision of engineering work on the railways has received relatively little examination despite being both safety-critical in its own right and having wider implications for the successful running of the railways. The present paper is concerned with understanding the factors that make different engineering works perceived as easier or harder to manage. We describe an approach building on notions of ‘span of control’, through which we developed the TOECAP inventory (Team, Organisation, Environment, Communication, Activity and Personal). This tool was validated through both interviews and questionnaires. As well as identifying the physical factors involved, the work also emphasised the importance of collaborative and attitudinal factors. We conclude by discussing limitations of the present work and future directions for development

    Topographic, Hydraulic, and Vegetative Controls on Bar and Island Development in Mixed Bedrock‐Alluvial, Multichanneled, Dryland Rivers

    Get PDF
    We investigate processes of bedrock‐core bar and island development in a bedrock‐influenced anastomosed reach of the Sabie River, Kruger National Park (KNP), eastern South Africa. For sites subject to alluvial stripping during an extreme flood event (~4470‐5630 m3 s‐1) in 2012, pre‐ and post‐flood aerial photographs and LiDAR data, 2D morphodynamic simulations, and field observations reveal that the thickest surviving alluvial deposits tend to be located over bedrock topographic lows. At a simulated peak discharge (~4500 m3 s‐1), most sediment (sand, fine gravel) is mobile but localized deposition on bedrock topographic highs is possible. At lower simulated discharges (<1000 m3 s‐1), topographic highs are not submerged, and deposition occurs in lower elevation areas, particularly in areas disconnected from the main channels during falling stage. Field observations suggest that in addition to discharge, rainwash between floods may redistribute sediments from bedrock topographic highs to lower elevation areas, and also highlight the critical role of vegetation colonization in bar stability, and in trapping of additional sediment and organics. These findings challenge the assumptions of preferential deposition on topographic highs that underpin previous analyses of KNP river dynamics, and are synthesized in a new conceptual model that demonstrates how initial bedrock topographic lows become topographic highs (bedrock core‐bars and islands) in the latter stages of sediment accumulation. The model provides particular insight into the development of mixed bedrock‐alluvial anastomosing along the KNP rivers, but similar processes of bar/island development likely occur along numerous other bedrock‐influenced rivers across dryland southern Africa and farther afield

    The pp -> pp pi pi pi reaction channels in the threshold region

    Full text link
    The cross section for prompt neutral and charged three pion production in pp interactions was measured at excess energies in the range 160 - 217 MeV. That comprises the first measurement of the pp->pp pi0pi0pi0 reaction and the comparison with the pp->pp pi+pi-pi0 reaction, in a very direct way. The experiment was performed above the eta meson production threshold and the cross section normalization was obtained from a concurrent measurement of the reaction pp->pp eta with the eta decaying into 3 pions. Since the same final states are selected, the measurement has a low systematical error. The measured cross section ratio sigma(pp->pp pi+pi-pi0)/sigma(pp->pp pi0\pi0\pi0) is compared to predictions of dominance of different isobars in the intermediate state.Comment: 12 pages, 4 figures New discussion on the pp->pp3pi reaction mechanis

    Risk assessment for the spread of Serratia marcescens within dental-unit waterline systems using Vermamoeba vermiformis

    Get PDF
    Vermamoeba vermiformis is associated with the biofilm ecology of dental-unit waterlines (DUWLs). This study investigated whether V. vermiformis is able to act as a vector for potentially pathogenic bacteria and so aid their dispersal within DUWL systems. Clinical dental water was initially examined for Legionella species by inoculating it onto Legionella selective-medium plates. The molecular identity/profile of the glassy colonies obtained indicated none of these isolates were Legionella species. During this work bacterial colonies were identified as a non-pigmented Serratia marcescens. As the water was from a clinical DUWL which had been treated with Alpronℱ this prompted the question as to whether S. marcescens had developed resistance to the biocide. Exposure to Alpronℱ indicated that this dental biocide was effective, under laboratory conditions, against S. marcescens at up to 1x108 colony forming units/millilitre (cfu/ml). V. vermiformis was cultured for eight weeks on cells of S. marcescens and Escherichia coli. Subsequent electron microscopy showed that V. vermiformis grew equally well on S. marcescens and E. coli (p = 0.0001). Failure to detect the presence of S. marcescens within the encysted amoebae suggests that V. vermiformis is unlikely to act as a vector supporting the growth of this newly isolated, nosocomial bacterium

    Effectiveness of the Malnutrition eLearning Course for Global Capacity Building in the Management of Malnutrition: Cross-Country Interrupted Time-Series Study.

    Get PDF
    BACKGROUND: Scaling up improved management of severe acute malnutrition has been identified as the nutrition intervention with the largest potential to reduce child mortality, but lack of operational capacity at all levels of the health system constrains scale-up. We therefore developed an interactive malnutrition eLearning course that is accessible at scale to build capacity of the health sector workforce to manage severely malnourished children according to the guidelines of the World Health Organization. OBJECTIVE: The aim of this study was to test whether the malnutrition eLearning course improves knowledge and skills of in-service and preservice health professionals in managing children with severe acute malnutrition and enables them to apply the gained knowledge and skills in patient care. METHODS: This 2-year prospective, longitudinal, cross-country, interrupted time-series study took place in Ghana, Guatemala, El Salvador, and Colombia between January 2015 and February 2017. A subset of 354 in-service health personnel from 12 hospitals and 2 Ministries of Health, 703 preservice trainees from 9 academic institutions, and 204 online users participated. Knowledge gained after training and retention over time was measured through pre- and postassessments comprising questions pertaining to screening, diagnosis, pathophysiology and treatment, and prevention of malnutrition. Comprehension, application, and integration of knowledge were tested. Changes in perception, confidence, and clinical practice were assessed through questionnaires and interviews. RESULTS: Before the course, awareness of the World Health Organization guidelines was 36.73% (389/1059) overall, and 26.3% (94/358) among in-service professionals. The mean score gain in knowledge after access to the course in 606 participants who had pre- and postassessment data was 11.8 (95% CI 10.8-12.9; P<.001)-a relative increase of 41.5%. The proportion of participants who achieved a score above the pass mark posttraining was 58.7% (356/606), compared with 18.2% (110/606) in pretraining. Of the in-service professionals, 85.9% (128/149) reported applying their knowledge by changing their clinical practice in screening, assessment, diagnosis, and management. This group demonstrated significantly increased retained knowledge 6 months after training (mean difference [SD] from preassessment of 12.1 [11.8]), retaining 65.8% (12.1/18.4) of gained knowledge from the training. Changes in the management of malnutrition were reported by trained participants, and institutional, operational, and policy changes were also found. CONCLUSIONS: The malnutrition eLearning course improved knowledge, understanding, and skills of health professionals in the diagnosis and management of children with severe acute malnutrition, and changes in clinical practice and confidence were reported following the completion of the course

    Compton scattering beyond the impulse approximation

    Full text link
    We treat the non-relativistic Compton scattering process in which an incoming photon scatters from an N-electron many-body state to yield an outgoing photon and a recoil electron, without invoking the commonly used frameworks of either the impulse approximation (IA) or the independent particle model (IPM). An expression for the associated triple differential scattering cross section is obtained in terms of Dyson orbitals, which give the overlap amplitudes between the N-electron initial state and the (N-1) electron singly ionized quantum states of the target. We show how in the high energy transfer regime, one can recover from our general formalism the standard IA based formula for the cross section which involves the ground state electron momentum density (EMD) of the initial state. Our formalism will permit the analysis and interpretation of electronic transitions in correlated electron systems via inelastic x-ray scattering (IXS) spectroscopy beyond the constraints of the IA and the IPM.Comment: 7 pages, 1 figur
    • 

    corecore