144 research outputs found

    Prediction of Human Transcriptional Biomarkers for Severe Infection with SARS-CoV-2

    Get PDF
    Defining the human host factors associated with severe vs mild COVID-19 cases in infected individuals has become of increasing interest. Mining large numbers of public gene expression datasets is an effective way to identify genes that contribute to a given phenotype. Combining RNA-sequencing data with the associated clinical metadata describing disease severity can enable earlier identification of those patients who are at higher risk of developing severe COVID-19 disease. We consequently identified 356 public RNA-seq human transcriptome samples from the Gene Expression Omnibus database that had disease severity metadata. We then subjected these samples to a robust RNA-seq data processing workflow to quantify gene expression in each patient. This process involved using Salmon to map the reads to the reference transcriptomes, edgeR to calculate significant differential expression levels, and gene ontology enrichment using Camera. We then applied a machine learning algorithm to the read counts data to identify features that best differentiated samples based on COVID-19 severity phenotype. Ultimately, we produced a ranked list of genes based on their Gini importance values that includes GIMAP7 and S1PR2, which are associated with immunity and inflammation (respectively). We expect that these results can establish a groundwork foundation to improve the development of improved prognostics for severe COVID-19

    B16: Chikungunya Virus Time Course Infection of Human Macrophages

    Get PDF
    Chikungunya virus (CHIKV) is an Alphavirus spread by Aedes spp. mosquitoes and is responsible for infecting 1.1 million people per year worldwide, including a large epidemic in the western hemisphere in 2014-2015. During the body’s immune response to CHIKV, human macrophages become infected after phagocytosis of CHIKV and undergo induced apoptosis, catalyzing the virus spread in the body. It is presently unclear what macrophage genes, functions, and intracellular signaling pathways are impacted during the early, intermediate, and late stages of CHIKV infection. Therefore we quantified the transcriptional response of human macrophage cells infected with CHIKV at two different timepoints

    Influenza research database: an integrated bioinformatics resource for influenza research and surveillance.

    Get PDF
    BackgroundThe recent emergence of the 2009 pandemic influenza A/H1N1 virus has highlighted the value of free and open access to influenza virus genome sequence data integrated with information about other important virus characteristics.DesignThe Influenza Research Database (IRD, http://www.fludb.org) is a free, open, publicly-accessible resource funded by the U.S. National Institute of Allergy and Infectious Diseases through the Bioinformatics Resource Centers program. IRD provides a comprehensive, integrated database and analysis resource for influenza sequence, surveillance, and research data, including user-friendly interfaces for data retrieval, visualization and comparative genomics analysis, together with personal log in-protected 'workbench' spaces for saving data sets and analysis results. IRD integrates genomic, proteomic, immune epitope, and surveillance data from a variety of sources, including public databases, computational algorithms, external research groups, and the scientific literature.ResultsTo demonstrate the utility of the data and analysis tools available in IRD, two scientific use cases are presented. A comparison of hemagglutinin sequence conservation and epitope coverage information revealed highly conserved protein regions that can be recognized by the human adaptive immune system as possible targets for inducing cross-protective immunity. Phylogenetic and geospatial analysis of sequences from wild bird surveillance samples revealed a possible evolutionary connection between influenza virus from Delaware Bay shorebirds and Alberta ducks.ConclusionsThe IRD provides a wealth of integrated data and information about influenza virus to support research of the genetic determinants dictating virus pathogenicity, host range restriction and transmission, and to facilitate development of vaccines, diagnostics, and therapeutics

    ViPR: an open bioinformatics database and analysis resource for virology research

    Get PDF
    The Virus Pathogen Database and Analysis Resource (ViPR, www.ViPRbrc.org) is an integrated repository of data and analysis tools for multiple virus families, supported by the National Institute of Allergy and Infectious Diseases (NIAID) Bioinformatics Resource Centers (BRC) program. ViPR contains information for human pathogenic viruses belonging to the Arenaviridae, Bunyaviridae, Caliciviridae, Coronaviridae, Flaviviridae, Filoviridae, Hepeviridae, Herpesviridae, Paramyxoviridae, Picornaviridae, Poxviridae, Reoviridae, Rhabdoviridae and Togaviridae families, with plans to support additional virus families in the future. ViPR captures various types of information, including sequence records, gene and protein annotations, 3D protein structures, immune epitope locations, clinical and surveillance metadata and novel data derived from comparative genomics analysis. Analytical and visualization tools for metadata-driven statistical sequence analysis, multiple sequence alignment, phylogenetic tree construction, BLAST comparison and sequence variation determination are also provided. Data filtering and analysis workflows can be combined and the results saved in personal ‘Workbenches’ for future use. ViPR tools and data are available without charge as a service to the virology research community to help facilitate the development of diagnostics, prophylactics and therapeutics for priority pathogens and other viruses

    Recombination in West Nile Virus: minimal contribution to genomic diversity

    Get PDF
    Recombination is known to play a role in the ability of various viruses to acquire sequence diversity. We consequently examined all available West Nile virus (WNV) whole genome sequences both phylogenetically and with a variety of computational recombination detection algorithms. We found that the number of distinct lineages present on a phylogenetic tree reconstruction to be identical to the 6 previously reported. Statistically-significant evidence for recombination was only observed in one whole genome sequence. This recombination event was within the NS5 polymerase coding region. All three viruses contributing to the recombination event were originally isolated in Africa at various times, with the major parent (SPU116_89_B), minor parent (KN3829), and recombinant sequence (AnMg798) belonging to WNV taxonomic lineages 2, 1a, and 2 respectively. This one isolated recombinant genome was out of a total of 154 sequences analyzed. It therefore does not seem likely that recombination contributes in any significant manner to the overall sequence variation within the WNV genome

    Revised conodont stratigraphy of the Cellon section (Silurian, Carnic Alps)

    Get PDF
    The Cellon section, located in the Carnic Alps, is a reference section for the Silurian of the world. The conodont association of the section is revised according to the most recent taxonomy and the biostratigraphy updated in the basis of the recently published zonation schemes. Seventy taxa (species and subspecies) belonging to 23 genera have been identified, allowing the discrimination of fifteen biozones from the upper Llandovery to the end of the Pridoli. However, some of the uppermost Llandovery and Wenlock biozones, corresponding to black shale intervals, have not been documented

    Clinical laboratory reference values amongst children aged 4 weeks to 17 months in Kilifi, Kenya: A cross sectional observational study

    Get PDF
    Reference intervals for clinical laboratory parameters are important for assessing eligibility, toxicity grading and management of adverse events in clinical trials. Nonetheless, haematological and biochemical parameters used for clinical trials in sub-Saharan Africa are typically derived from industrialized countries, or from WHO references that are not region-specific. We set out to establish community reference values for haematological and biochemical parameters amongst children aged 4 weeks to 17 months in Kilifi, Kenya. We conducted a cross sectional study nested within phase II and III trials of RTS, S malaria vaccine candidate. We analysed 10 haematological and 2 biochemical parameters from 1,070 and 423 community children without illness prior to experimental vaccine administration. Statistical analysis followed Clinical and Laboratory Standards Institute EP28-A3c guidelines. 95% reference ranges and their respective 90% confidence intervals were determined using non-parametric methods. Findings were compared with published ranges from Tanzania, Europe and The United States. We determined the reference ranges within the following age partitions: 4 weeks to <6 months, 6 months to less than <12 months, and 12 months to 17 months for the haematological parameters; and 4 weeks to 17 months for the biochemical parameters. There were no gender differences for all haematological and biochemical parameters in all age groups. Hb, MCV and platelets 95% reference ranges in infants largely overlapped with those from United States or Europe, except for the lower limit for Hb, Hct and platelets (lower); and upper limit for platelets (higher) and haematocrit(lower). Community norms for common haematological and biochemical parameters differ from developed countries. This reaffirms the need in clinical trials for locally derived reference values to detect deviation from what is usual in typical children in low and middle income countries

    A comprehensive collection of systems biology data characterizing the host response to viral infection

    Get PDF
    The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archived at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). By comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore