337 research outputs found

    Contribution of stratospheric warmings to temperature trends in the middle atmosphere from the lidar series obtained at Haute-Provence Observatory (44°N)

    Get PDF
    International audienceThis study describes a method to calculate long-term temperature trends, as an alternative to the ones based on monthly mean temperatures, which are highly impacted by the high winter variability partially due to wave-mean flow interactions like Sudden Stratospheric Warmings (SSW). This method avoids the strong influence of SSWs and provides "background" temperature trend estimates which are in better agreement with expected direct radiative effects. The data set used results from lidar measurements - performed above southern France continuously since late 1978 - combined with radiosonde profiles. With this new methodology, the long-term trends during winter at 40 km shows a larger cooling per decade (−2 ± 0.4 K) than when the mean temperature is used (−0.4 ± 0.4 K). The background temperature trend is closer to the summer trend estimates which are similar whatever the temperature proxy used, due to the absence of SSWs (−2.9 ± 0.3 K per decade with the mean-based method and −3.4 ± 0.3 K per decade with the background-based calculation). Based on this background temperature, composite evolutions of winter anomalies for both vortex-displacement and vortex-splitting major SSWs have been displayed: in both cases the largest warming occurs at the time of the SSW in the upper stratosphere, with mean amplitudes of more than 10 K. A warm signal in the upper mesosphere could suggest a potential precursory role of gravity waves. Displacement-type events present an 18-day periodicity, which is a clear sign of the wave number one Rossby wave. Colder tropospheric temperatures are noticed before and during the SSW, and warmer ones after the event, with a stronger signal for split-type events

    Statistical estimation of stratospheric particle size distribution by combining optical modelling and lidar scattering measurement

    Get PDF
    International audienceA method for estimating the stratospheric particle size distribution from multiwavelength lidar measurements is presented. It is based on matching measured and model-simulated backscatter coefficients. The lidar backscatter coefficients measured at the three commonly used wavelengths 355, 532 and 1064 nm are compared to a precomputed look-up table of model-calculated values. The optical model assumes that particles are spherical and that their size distribution is unimodal. This inverse problem is not trivial because the optical model is highly non-linear with a strong sensitivity to the size distribution parameters in some cases. The errors in the lidar backscatter coefficients are explicitly taken into account in the estimation. The method takes advantage of the statistical properties of the possible solution cluster to identify the most probable size distribution parameters. In order to discard model-simulated outliers resulting from the strong non-linearity of the model, solutions farther than one standard deviation of the median values of the solution cluster are filtered out, because the most probable solution is expected to be in the densest part of the cluster. Within the filtered solution cluster, the estimation algorithm minimizes a cost function of the misfit between measurements and model simulations. Two validation cases are presented on Polar Stratospheric Cloud (PSC) events detected above the ALOMAR observatory (69° N – Norway). A first validation is performed against optical particle counter measurements carried out in January 1996. In non-depolarizing regions of the cloud (i.e. spherical particles), the parameters of an unimodal size distribution and those of the optically dominant mode of a bimodal size distribution are quite successfully retrieved, especially for the median radius and the geometrical standard deviation. As expected, the algorithm performs poorly when solid particles drive the backscatter coefficient. A small bias is identified in modelling the refractive index when compared to previous works that inferred PSC type Ib refractive indices. The accuracy of the size distribution retrieval is improved when the refractive index is set to the value inferred in the reference paper. Our results are then compared to values retrieved with another similar method that does not account for the effect of the measurements errors and the non-linearity of the optical model on the likelihood of the solution. The case considered is a liquid PSC observed over northern Scandinavia on January 2005. An excellent agreement is found between the two methods when our algorithm is applied without any statistical filtering of the solution cluster. However, the solution for the geometrical standard deviation appears to be rather unlikely with a value close to unity (σ≈1.04). When our algorithm is applied with solution filtering, a more realistic value of the standard deviation (σ≈1.27) is found. This highlights the importance of taking into account the non linearity of the model together with the lidar errors, when estimating particle size distribution parameters from lidar measurements

    Overview of the Temperature Response in the Mesosphere and Lower Thermosphere to Solar Activity

    Get PDF
    The natural variability in the terrestrial mesosphere needs to be known to correctly quantify global change. The response of the thermal structure to solar activity variations is an important factor. Some of the earlier studies highly overestimated the mesospheric solar response. Modeling of the mesospheric temperature response to solar activity has evolved in recent years, and measurement techniques as well as the amount of data have improved. Recent investigations revealed much smaller solar signatures and in some case no significant solar signal at all. However, not much effort has been made to synthesize the results available so far. This article presents an overview of the energy budget of the mesosphere and lower thermosphere (MLT) and an up-to-date status of solar response in temperature structure based on recently available observational data. An objective evaluation of the data sets is attempted and important factors of uncertainty are discussed

    Temperature climatology with Rayleigh lidar above Observatory of Haute-provence : dynamical feedback

    Get PDF
    International audienceRayleigh lidar in synergy with satellite observations (SSU and AMSU) allow insuring an efficient monitoring and showing that cooling has continued. New approach for trend detection has been developed allowing a better estimate of changes due to radiative forcing. Stratospheric Warmings and gravity waves contribute to insure a dynamical feedback of the long-term changes

    LiDAR for Atmosphere Research over Africa (LARA)

    No full text
    International audienceThis paper describes the LIDAR for atmosphere research over Africa and current initiatives being undertaken in South Africa. A mobile LIDAR system is being developed at the Council for Scientific and Industrial Research (CSIR) National Laser Centre (NLC), Pretoria (25°5 ′ S;28°2 ′ E), South Africa, for remote sensing the atmosphere. The initial results conclude that the system is capable of providing aerosol/cloud backscatter measurements for the height region from ground to 40 km with a 10 m vertical height resolution

    VALIDATION OF GOMOS OZONE PROFILES USING NDSC LIDAR : STATISTICAL COMPARISONS

    Get PDF
    ABSTRACT The lidars deployed in the NDSC framework have been used for the validation of GOMOS onboard ENVISAT. During the commissioning phase around ten coincidences per site have been investigated. No significant bias, larger than ±5 %, has been reported except around 50 km and 20 km where both techniques are known to present some limitations. The estimated errors of both GOMOS and lidar are in good agreement with the standard deviation of the differences between coincidences. At higher latitude, comparisons are not so good because of the measurement conditions of bright limb during this period

    Lidar design and control tools for long-term operations

    No full text
    Abstract. Rayleigh lidar allows to derived temperature from 30 to 80 km. More than 30 years of continuous measurements have been performed at Observatory of HauteProvence providing a long term cooling. Along the years of operations, the technique has been improved. The design of the lidar is described here. The emission and reception benefit for advance solutions of coupled lasers or mirrors with optical fibbers. Alignment and synchronization are also described, while noise estimates correspond to an issue when upper mesosphere want to be investigated

    Mid-latitude summer response of the middle atmosphere to short-term solar UV changes

    No full text
    International audienceTemperature and wind data obtained with Rayleigh lidar since 1979 and Russian rockets since 1964 are analyzed to deduce the summer response of the middle atmosphere to short-term solar UV changes. The equivalent width of the 1083 nm He I line is used as a proxy to monitor the short-term UV flux changes. Spectral analyses are performed on 108-day windows to extract the 27-day component from temperature, wind and solar data sets. Linear regressions between these spectral harmonics show some significant correlations around 45 km at mid-latitudes. For large 27-day solar cycles, amplitudes of 2 K and 6 m s-1 are calculated for temperature data series over the south of France (44°N), and on wind data series over Volgograd (49°N), respectively. Cross-spectrum analyses have indicated correlations between these atmospheric parameters and the solar proxy with a phase lag of less than 2 days. These statistically correlative results, which provide good qualitative agreement with numerical simulations, are both obtained at mid-latitude. However, the observed amplitudes are larger than expected, with numerical models suggesting that dynamical processes such as equatorial or gravity waves may be responsible

    Temperature trends in the stratosphere and mesosphere

    No full text
    International audienceA review of several studies on the analysis of some long-term series is presented including rocket, lidar and satellite data. Despite the discontinuities due to the use of different type of sensors and corrections, rocketsondes, launched on a routine basis by the United States and Japan at several locations since 1969, have been re-analysed using a least square fitting method with a multi-parameter function. This model includes some linear functions to represent trends, natural cyclic variability (seasons, solar activity, equatorial QBO wind) and instrumental changes. Rayleigh lidar is also a well adapted instrument for monitoring absolute temperature in the middle atmosphere in a long term commitment. Lidar data obtained since 1979 in France (OHP) in the frame of the NDSC (Network of Detection of Stratospheric Changes) have also been analysed. Comparisons between lidar data and NCEP (National Center for Environmental Prediction) data interpolated from the global analyses to the lidar location reveal temperature differences. It appears that some bias caused by tidal influences is present in temperature series
    • …
    corecore