2,700 research outputs found

    Discovery of Four High Proper Motion L Dwarfs, Including a 10 pc L Dwarf at the L/T Transition

    Get PDF
    We discover four high proper motion L dwarfs by comparing the Wide-field Infrared Survey Explorer (WISE) to the Two Micron All Sky Survey (2MASS). WISE J140533.32+835030.5 is an L dwarf at the L/T transition with a proper motion of 0.85+/-0.02" yr^-1, previously overlooked due to its proximity to a bright star (V=12 mag). From optical spectroscopy we find a spectral type of L8, and from moderate-resolution J band spectroscopy we find a near-infrared spectral type of L9. We find WISE J140533.32+835030.5 to have a distance of 9.7+/-1.7 pc, bringing the number of L dwarfs at the L/T transition within 10 pc from six to seven. WISE J040137.21+284951.7, WISE J040418.01+412735.6, and WISE J062442.37+662625.6 are all early L dwarfs within 25 pc, and were classified using optical and low-resolution near-infrared spectra. WISE J040418.01+412735.6 is an L2 pec (red) dwarf, a member of the class of unusually red L dwarfs. We use follow-up optical and low-resolution near-infrared spectroscopy to classify a previously discovered (Castro & Gizis 2012) fifth object WISEP J060738.65+242953.4 as an (L8 Opt/L9 NIR), confirming it as an L dwarf at the L/T transition within 10 pc. WISEP J060738.65+242953.4 shows tentative CH_4 in the H band, possibly the result of unresolved binarity with an early T dwarf, a scenario not supported by binary spectral template fitting. If WISEP J060738.65+242953.4 is a single object, it represents the earliest onset of CH_4 in the H band of an L/T transition dwarf in the SpeX Library. As very late L dwarfs within 10 pc, WISE J140533.32+835030.5 and WISEP J060738.65+242953.4 will play a vital role in resolving outstanding issues at the L/T transition.Comment: 45 pages, 12 figures, accepted for publication in Ap

    X-Ray Flares and Oscillations from the Black Hole Candidate X-Ray Transient XTE J1650-500 at Low Luminosity

    Full text link
    We report on X-ray observations made with the Rossi X-ray Timing Explorer of the black hole candidate (BHC) transient XTE J1650-500 at the end of its first, and currently only, outburst. By monitoring the source at low luminosities over several months, we found 6 bright ~100 second X-ray flares and long time scale oscillations of the X-ray flux. The oscillations are aperiodic with a characteristic time scale of 14.2 days and an order of magnitude variation in the 2.8-20 keV flux. The oscillations may be related to optical "mini-outbursts" that have been observed at the ends of outbursts for other short orbital period BHC transients. The X-ray flares have durations between 62 and 215 seconds and peak fluxes that are 5-24 times higher than the persistent flux. The flares have non-thermal energy spectra and occur when the persistent luminosity is near 3E34 (d/4 kpc)^2 erg/s (2.8-20 keV). The rise time for the brightest flare demonstrates that physical models for BHC systems must be able to account for the situation where the X-ray flux increases by a factor of up to 24 on a time scale of seconds. We discuss the flares in the context of observations and theory of Galactic BHCs and compare the flares to those detected from Sgr A*, the super-massive black hole at the Galactic center. We also compare the flares to X-ray bursts that are seen in neutron star systems. While some of the flare light curves are similar to those of neutron star bursts, the flares have non-thermal energy spectra in contrast to the blackbody spectra exhibited in bursts. This indicates that X-ray bursts should not be taken as evidence that a given system contains a neutron star unless the presence of a blackbody component in the burst spectrum can be demonstrated.Comment: 9 pages, accepted by Ap

    WISEP J180026.60+013453.1: A Nearby Late L Dwarf Near the Galactic Plane

    Full text link
    We report a nearby L7.5 dwarf discovered using the Preliminary Data Release of the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All-Sky Survey (2MASS). WISEP J180026.60+013453.1 has a motion of 0.42 arcsec/yr and an estimated distance of 8.8 \pm 1.0 pc. With this distance, it currently ranks as the sixth closest known L dwarf, although a trigonometric parallax is needed to confirm this distance. It was previously overlooked because it lies near the Galactic Plane (b=12). As a relatively bright and nearby late L dwarf with normal near-infrared colors, W1800+0134 will serve as a benchmark for studies of cloud-related phenomena in cool substellar atmospheres.Comment: 12 pages, 2 figure, accepted to the Astronomical Journal (AJ

    Cryo-EM structure of the monomeric Rhodobacter sphaeroides RC-LH1 core complex at 2.5ā€…Ć….

    Get PDF
    Reaction centre light-harvesting 1 (RC-LH1) complexes are the essential components of bacterial photosynthesis. The membrane-intrinsic LH1 complex absorbs light and the energy migrates to an enclosed RC where a succession of electron and proton transfers conserves the energy as a quinol, which is exported to the cytochrome bc1 complex. In some RC-LH1 variants quinols can diffuse through small pores in a fully circular, 16-subunit LH1 ring, while in others missing LH1 subunits create a gap for quinol export. We used cryogenic electron microscopy to obtain a 2.5ā€…Ć… resolution structure of one such RC-LH1, a monomeric complex from Rhodobacter sphaeroides. The structure shows that the RC is partly enclosed by a 14-subunit LH1 ring in which each Ī±Ī² heterodimer binds two bacteriochlorophylls and, unusually for currently reported complexes, two carotenoids rather than one. Although the extra carotenoids confer an advantage in terms of photoprotection and light harvesting, they could impede passage of quinones through small, transient pores in the LH1 ring, necessitating a mechanism to create a dedicated quinone channel. The structure shows that two transmembrane proteins play a part in stabilising an open ring structure; one of these components, the PufX polypeptide, is augmented by a hitherto undescribed protein subunit we designate as protein-Y, which lies against the transmembrane regions of the thirteenth and fourteenth LH1Ī± polypeptides. Protein-Y prevents LH1 subunits 11-14 adjacent to the RC QB site from bending inwards towards the RC and, with PufX preventing complete encirclement of the RC, this pair of polypeptides ensures unhindered quinone diffusion

    Complete Pseudohole and Heavy-Pseudoparticle Operator Representation for the Hubbard Chain

    Full text link
    We introduce the pseudohole and heavy-pseudoparticle operator algebra that generates all Hubbard-chain eigenstates from a single reference vacuum. In addition to the pseudoholes already introduced for the description of the low-energy physics, this involves the heavy pseudoparticles associated with Hamiltonian eigenstates whose energy spectrum has a gap relatively to the many-electron ground state. We introduce a generalized pseudoparticle perturbation theory which describes the relevant finite-energy ground state transitions. In the present basis these excitations refer to a small density of excited pseudoparticles. Our operator basis goes beyond the Bethe-ansatz solution and it is the suitable and correct starting point for the study of the finite-frequency properties, which are of great relevance for the understanding of the unusual spectral properties detected in low-dimensional novel materials.Comment: LaTeX, 32 pages, no Figures. To be published in Phys. Rev. B (15th of August 1997

    A survey of partial differential equations in geometric design

    Get PDF
    YesComputer aided geometric design is an area where the improvement of surface generation techniques is an everlasting demand since faster and more accurate geometric models are required. Traditional methods for generating surfaces were initially mainly based upon interpolation algorithms. Recently, partial differential equations (PDE) were introduced as a valuable tool for geometric modelling since they offer a number of features from which these areas can benefit. This work summarises the uses given to PDE surfaces as a surface generation technique togethe

    The UCR Minicore: a resource for cowpea research and breeding

    Get PDF
    Special Issue on Legume Genomics[EN] Incorporation of new sources of genetic diversity into plant breeding programs is crucial for continuing to improve yield and quality, as well as tolerance to abiotic and biotic stresses. A minicore (the ā€œUniversity of California, Riverside (UCR) Minicoreā€) composed of 368 worldwide accessions of cultivated cowpea has been assembled, having been derived from the UCR cowpea collection. High-density genotyping with 51,128 SNPs followed by principal component and genetic assignment analyses identified six subpopulations in the UCR Minicore, mainly differentiated by cultivar group and geographic origin. All six subpopulations were present to some extent in West African material, suggesting that West Africa is a center of diversity for cultivated cowpea. Additionally, population structure analyses supported two routes of introduction of cowpea into the U.S.: (1) from Spain to the southwest U.S. through Northern Mexico and (2) from Africa to the southeast U.S. via the Caribbean. Genome-wide association studies (GWAS) narrowed several traits to regions containing strong candidate genes. For example, orthologs of the Arabidopsis FLOWERING LOCUS T lie within a major QTL for flowering time. In summary, this diverse, yet compact cowpea collection constitutes a suitable resource to identify loci controlling complex traits, consequently providing markers to assist with breeding to improve this crop of high relevance to global food and nutritional securitySIThis research was funded by the Feed the Future Innovation Lab for Climate Resilient Cowpea (USAID Cooperative Agreement AID-OAA-A-13-00070), the National Science Foundation BREAD project ā€œAdvancing the Cowpea Genome for Food Securityā€ (NSF IOS-1543963), Hatch Project CA-R-BPS-5306-H. Also, M.C., I.C., and V.C. were supported by National Funds from FCT-Portuguese Foundation for Science and Technology under the project grant number UIDB/04033/202

    COMPLEMENT FACTOR B IS A DETERMINANT OF BOTH METABOLIC AND CARDIOVASCULAR FEATURES OF METABOLIC SYNDROME

    Get PDF
    CFB (complement factor B) is elevated in adipose tissue and serum from patients with type 2 diabetes mellitus and cardiovascular disease, but the causal relationship to disease pathogenesis is unclear. Cfb is also elevated in adipose tissue and serum of the spontaneously hypertensive rat, a well-characterized model of metabolic syndrome. To establish the role of CFB in metabolic syndrome, we knocked out the Cfb gene in the spontaneously hypertensive rat. Cfbāˆ’/āˆ’ rats showed improved glucose tolerance and insulin sensitivity, redistribution of visceral to subcutaneous fat, increased adipocyte mitochondrial respiration, and marked changes in gene expression. Cfbāˆ’/āˆ’ rats also had lower blood pressure, increased ejection fraction and fractional shortening, and reduced left ventricular mass. These changes in metabolism and gene expression, in adipose tissue and left ventricle, suggest new adipose tissue-intrinsic and blood pressure-independent mechanisms for insulin resistance and cardiac hypertrophy in the spontaneously hypertensive rat. In silico analysis of the human CFB locus revealed 2 cis-regulated expression quantitative trait loci for CFB expression significantly associated with visceral fat, circulating triglycerides and hypertension in genome-wide association studies. Together, these data demonstrate a key role for CFB in the development of spontaneously hypertensive rat metabolic syndrome phenotypes and of related traits in humans and indicate the potential for CFB as a novel target for treatment of cardiometabolic disease
    • ā€¦
    corecore