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Gabriela González Castro · Hassan Ugail · Philip Willis · Ian Palmer

A Survey of Partial Differential Equations in Geometric
Design

Abstract Computer aided geometric design is an area
where the improvement of surface generation techniques
is an everlasting demand since faster and more accu-
rate geometric models are required. Traditional meth-
ods for generating surfaces were initially mainly based
upon interpolation algorithms. Recently, partial differ-
ential equations (PDE) were introduced as a valuable
tool for geometric modelling since they offer a number
of features from which these areas can benefit. This work
summarises the uses given to PDE surfaces as a surface
generation technique together with some other applica-
tions to computer graphics.

Keywords PDE surfaces · Geometric modelling · PDE
method

1 Introduction

The systematisation and characterization of certain sur-
faces dates as far back as the times of the Roman Empire.
They were interested in creating a mould for ship hulls
since their conquering aspirations demanded mass pro-
duction of war vessels [23]. However, the introduction of
drawings defining the shape of a hull became popular
on England on the 17 th century when a wooden beam,
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known by the name of spline, was used to draw smooth
curves. Nowadays, geometric design is aided by computa-
tional tools where a large number of surfaces generation
techniques are readily available.

The majority of methods used in computer aided
geometric design for generating surfaces are commonly
based on a specific type of implicit surface, namely poly-
nomial surfaces. This kind of surface is characterized by
a number of control points and weights. However, the
manipulation of such surfaces is not as straightforward
as one would desire since the relationship between the
changes in geometry and the manipulation of the con-
trol points is not intuitive.

Parametric surfaces are in general easier to manip-
ulate than implicit ones since it is only necessary to
modify some of the parameters to obtain a different sur-
face. Parametric surfaces are commonly represented by
splines, which are a popular representation of curves in
computer aided geometric design due to the advantages
they offer, namely: the simplicity of their construction
and the accuracy with which they can be evaluated.

1.1 Common surface generation techniques for
geometric design

Today, in the geometric design literature there exist nu-
merous methods for surface generations. In particular,
spline-based techniques have become increasingly popu-
lar over the years. A brief description of the most fre-
quently occurring surface generation techniques is given
below.

B-splines are curves that can be described by a given
set of points. This technique was originally based on
polynomial interpolation through the complete set of
points. However, as high order polynomials are obtained
from such a procedure, the resulting surfaces lacked smooth-
ness. Afterwards, in the interest of providing smoothness
to such surfaces, piecewise interpolation was carried out.
De Casteljau and Bézier, both involved in automotive
design, are the pioneers in the area [23]. The most com-
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mon functions used to achieve piecewise interpolation
were third order polynomials and conics.

The most common types of spline used in computer
designed are:

• Bézier surfaces

These surfaces are a special case of Hermite inter-
polation. They are constructed as a sequence of cu-
bic segments rather than linear ones [32]. They are
determined by,

S(u, v) =
m∑

j=0

n∑
k=0

Pj,kBezj,m (v) Bezk,n (u) , (1)

where Pj,k denote the control points and

Bezk,n =
n!

k! (n − k)!
uk (1 − u)n−k

.

• B-splines

These are a generalisation of Bézier curves where each
of the control points is multiplied by its respective ba-
sis function. The basis functions are determined by
a well established rule and depend on the number
of knots (joining points) required. Thus, a B-spline
surface is defined by,

S(u, v) =
m∑

j=0

n∑
k=0

Ni,p (u)Nj,q (v)Pj,k , (2)

where Pj,k denote the control points, Ni,p and Ni,q

are the B-spline basis functions of degree p and q
respectively. A B-spline basis function of degree r is
given by,

Ni,r(u) =
u − ui

ui+r−1 − ti
Ni,r−1 +

ui+k − u

ui+r − ui+1
Ni+1,r−1 ,

where ui denotes a component of a pre-defined knot
vector.

• NURBS

Non-Uniform Rational B-Splines differ from B-splines
and Bézier curves. The difference is that NURBS in-
clude the weighting of the non-equidistant control
points, which is also the reason for which they are
regarded as rational. These surfaces are mathemati-
cally described by,

S(u, v) =

∑m
j=0

∑n
k=0 Ni,p (u)Nj,q (v)wj,kPj,k∑m

j=0

∑n
k=0 Ni,p (u)Nj,q (v)wj,k

,

(3)

where wj,k represents the weight associated with the
control point Pj,k.

The most common types of parametric surfaces used
in computer aided geometric design vary from rectangu-
lar surfaces to Coons patches. A brief description of each
of these types is given below. However, if the reader is
interested in further details, the work outlined in [23]
would be an excellent further reading since it is a self-
contained reference with a thorough description of each
of the surface types mentioned in this work.

Rectangular surfaces, commonly known as tensor prod-
uct surfaces, were based on bicubic spline interpolation
in their early developments [23]. This type of surfaces,
as its name points out, maps a rectangular domain into
a three-dimensional region.

Coons patches are regarded as surfaces fitted through
a given set of four boundary curves. The only condition
imposed on the boundary curves associated with a Coons
patch surface is that these curves have to meet at the
patch corners.

Triangular surfaces take their name from the geo-
metric arrangement from where each of their points is
computed. The domain is divided into triangular ele-
ments and then each point of the surface is evaluated
at the barycentric coordinates of its respective triangu-
lar element in the domain. This type of surface was first
used in finite element theory, where their formulation
was complicated and exhausting. However, the formula-
tion of triangular patches in Bernstein form was more
elegant [23].

Subdivision is a surface generation technique aiming
to find a smooth surface from a rough one. This tech-
nique consists of an iterative process by which new points
within the surface are found according to a given sub-
division rule and, unlike parametric surfaces, they can
represent surfaces with arbitrary topology [15]. However,
subdivision surfaces present some problems concerning
the absence of a mechanism by which inner collision can
be detected. Solution to some of these problems are pre-
sented in De rose et al. [15].

Nevertheless, traditional surface generation techniques
are not capable of guaranteeing global smoothness. Re-
cently, this problem has been overcome by the introduc-
tion of partial differential equations as a tool for surface
manipulation. Therefore, an overview containing some
mathematical details concerning partial differential equa-
tions, relevant to this work, is given below.

1.2 Partial Differential Equations

Partial differential equations (PDE) are equations in which
the unknown function depends on a of set partial deriva-
tives of this unknown function with respect to two or
more independent variables. For instance, let U(x, y) be
the unknown function depending on two independent
variables x and y; then, the general form of a second
order partial differential equation is given by,

AUxx+BUxy+CUyy+DUx+EUy+FU = G(x, y) , (4)
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where A, B, C, D, E and F are all general functions of
U(x, y), x and y and subscripts denote derivatives. Note
that Equation (4) contains terms with different orders of
derivatives.

The importance of such a mathematical tool is that
almost every physical phenomenon is modelled by a PDE.
For instance, the heat equation in either one or two
spatial dimensions describes how heat is distributed in
a given length or area respectively. Other examples of
PDEs describing physical phenomena are the wave equa-
tion and the Laplace equation. Their use has also been
extended to areas such as finance where the Black-Scholes
equation models the variation of stock prices with time.

PDEs can be classified according to different features
such as:

– Order. This is determined by the order of the highest
partial derivative present in the equation.

– Homogeneity. This feature classifies PDEs as homo-
geneous and nonhomogeneous according to G(x, y). If
this term is identically equal to zero the PDE is said
to be homogenous and otherwise is non-homogeneous.

– Linearity. A PDE is said to be linear when the coef-
ficients do not depend on U(x, y) and no derivative
term is multiplied by any other including itself. It is
nonlinear otherwise.

Additionally, linear PDEs can be also classified ac-
cording to the type of coefficients. Such a classification
is divided into three categories: parabolic, hyperbolic and
elliptic. For instance, Equation (4) can fall into any of
these categories as follows:

– Parabolic. The PDE must satisfy B2 − 4AC = 0.
– Hyperbolic. The equation falls into this category if

B2 − 4AC > 0.
– Elliptic. The partial differential equation is regarded

as such when B2 − 4AC < 0.

This classification extends to PDEs of higher order.
However, the classification criterion varies depending on
the order of the PDE. Additionally this classification has
been useful in characterizing the type of phenomenon
described by each class of equation.

The task of solving PDEs in general is not easy. How-
ever, several methods have been developed for finding
their solution. These methods vary from purely analyt-
ical schemes to full numerical techniques. The methods
available for solving PDEs are beyond the scope of this
work and therefore, the reader is referred to [24] for fur-
ther details.

Now, PDEs have been introduced to areas such as
computer graphics and animation where they have been
capable of solving a variety of problems [45] very effi-
ciently. Furthermore, this mathematical tool has met the
ever increasing demand of realism in the mentioned ar-
eas.

This work summarises all the aspects concerning the
use of PDEs as a surface generation technique and it is
divided as follows: Section 2 provides a brief description

of PDE surfaces. Section 3 includes general information
about implicit PDE surfaces and lists the most common
velocity fields used in computer aided geometric design.
Section 4 describes parametric PDE surfaces and some
of the methods available for producing them. Section 5
describes some of the applications of PDEs in geometric
design, in particular, in areas associated with computer
aided geometric design whereas some other applications
given to PDEs in computer graphics are named in Sec-
tion 6. Finally, Section 7 outlines the conclusions of this
work.

2 Geometric PDE surfaces

The term PDE surfaces refers to surfaces that have been
generated or modified by the solution of a given par-
tial differential equation. These surfaces are the graphi-
cal representation of the solution to a given PDE subject
to a set of boundary conditions. The advantages offered
by the use of PDEs to generate surfaces over other sur-
face generation techniques such as splines or NURBS are
numerous, namely:

– Surface generation techniques based on PDEs require
a smaller number of parameters than spline-based
techniques to represent a given surface since PDE
surfaces are characterized by a set of boundary curves,
whereas spline-based techniques are defined by a set
of control points. Thus, PDE surfaces are more likely
to be easier to manipulate than others.

– PDE surfaces automatically guarantee some degree of
intrinsic smoothness during blending processes, whereas
such smoothness is not necessarily guaranteed when
blending surfaces obtained when using spline-based
techniques. The smoothness obtained by blending PDE
surfaces increases with the order of the PDE giving
rise to such a surface.

– PDE-based surface generation techniques potentially
unify geometric and physical aspects of surface mod-
elling. This result is particularly useful for engineer-
ing design.

The type and order of the PDE to use is generally
not restricted. For instance, parabolic nonlinear PDEs
of second, fourth and higher order have been used [45]
with the aim of describing the evolution of an initial sur-
face subject to the chosen PDE. Notice that the degree
of smoothness is determined by the order of the equa-
tion. PDE surfaces comprise both implicit and paramet-
ric surfaces. Moreover, given the diversity of areas where
PDE surfaces have been used, PDE surfaces can also be
classified according to the problem they are aiming to
solve within the scope of computer-aided geometric de-
sign. However, a simple and well defined classification
taking into account both criteria simultaneously is very
difficult to portray. Thus, a brief description of both im-
plicit and parametric PDE surfaces is outlined in the
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next two sections, followed by a section entirely dedi-
cated to describe the uses given to PDE surfaces in com-
puter design.

3 Implicit PDE surfaces

Implicit PDE surfaces are those that result from an evo-
lution equation for which its original domain is a pre-
established surface; that is, these surfaces are generally
calculated as the collection of points p satisfying a given
geometric flow [45]. The general representation of the
geometric flow is determined by,

∂p

∂t
= V (p, t) , (5)

where V (p, t) denotes an arbitrary velocity field. It is
important to stress that the initial surface for which the
geometric flow is applied must be a closed and orientable
one. Thus, Equation (5) gives rise to a family of closed
and orientable surfaces S (t) determined by,

∂p

∂t
= N (p (t))Vn (k1, k2, p) , (6)

where p (t) is a point in S (t), Vn (k1, k2, p) and N (p)
represent the normal velocity and vector of the surface
at p respectively, whilst k1 and k2 denote the principal
curvatures of S (t).

Several velocity fields have been implemented for study-
ing different problems present in computer aided geomet-
ric design such as surface blending, N -sided hole filling,
free-form surface construction, noise reduction and im-
age inpainting [45], [3], [4]. Examples of the most com-
mon velocity fields are listed below and, for the sake of
brevity, only the PDE associated with them is given. The
uses of these velocity fields will be discussed in a further
section.

Mean curvature flow. This velocity flow is described
by,

Vn = − 1
2 (k1 + k2) .

Averaged mean curvature flow. This flow is given
by,

Vn = 1
2 (k1 + k2) + h(t) ,

where

h(t) =
R

S(t)
1
2 (k1+k2)dσ

R
S(t) dσ

.

Surface diffusion flow. A fourth order velocity field
is determined by,

Vn = ∇2 1
2 (k1 + k2) ,

where ∇2 represents the laplacian.

Higher order geometric flows. The general PDE
determining such flows is,

Vn = (−1)k+1 ∇2k 1
2 (k1 + k2) ,

where k ≥ 2.

Heat flow. This flow is described by,

Vn = (−1)k+1 ∇2kp (t) ,

where k > 0 and p (t) represents a point in S (t).

Willmore flow. This is a fourth order flow given by,

Vn = ∇2 (k1 + k2) + 2 (k1 + k2)
(
(k1 + k2)

2 − K
)

,

where K represents the Gaussian curvature.
The usual approach for solving PDEs related to prob-

lems in computer aided geometric design consists of using
finite differences. Details concerning the spatial and tem-
poral discretisations together with the criteria applied to
some other aspects such as the evaluation of boundary
conditions, mesh regularisation, stopping criteria and the
generation of the initial mesh are exhaustively explained
in [45].

Generally, the velocity fields are geometry intrinsic;
i.e., they are applicable to surfaces with arbitrary topol-
ogy. Additionally, these velocity fields are volume pre-
serving and in the vast majority of cases, they are area
reducing. However, they are volume preserving if and
only if the surface to which they are applied is closed.
Therefore, in the event of applying them to an open sur-
face with a fixed boundary the area and volume preserv-
ing assertions stated before are not necessarily valid.

So far, implicit PDE surfaces result from the evolu-
tion of PDEs through time; that is, parabolic PDEs have
been discussed. However, implicit PDE surfaces can also
be obtained from elliptic PDEs [20]. A brief description
on how elliptic PDEs give rise to implicit PDE surfaces
is given below, where the most relevant mathematical
details are outlined.

3.1 Accounting for the use of elliptic PDEs to obtain
implicit PDE surfaces

The use of elliptic PDEs for generating implicit surfaces
was introduced with the aim of taking advantage of the
powerful parametric PDE formulation avoiding topolog-
ical restrictions [19]. This type of implicit surface is re-
garded as the solution to,

(
a2 ∂2

∂x2
+ b2 ∂2

∂y2
+ c2 ∂2

∂z2

)2

X (x, y, z) = 0 , (7)

where x, y and z denote the coordinate system and vary
from 0 to 1 whereas a, b and c represent shape control
parameters inherent to the PDE.
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In principle, four boundary conditions are required to
solve Equation (7); however, analytic solutions, in gen-
eral, does not exist for solving it and numerical meth-
ods are used to obtain an approximation of the surface.
For example, standard finite differences schemes are im-
plemented to find the surface satisfying Equation (7).
Therefore, the incorporation of additional constraints,
either hard or flexible ones, is very straightforward since
such constraints can be represented by additional alge-
braic equations that can be added to the original system
inherent to the finite difference representation of Equa-
tion (7).

The work presented in [19] provides further mathe-
matical details of such a formulation together with some
of its uses in computer aided design such as shape design,
blending, reconstruction of surfaces from either curves
or scattered points, sculpting, and the implementation
of interactive tools.

4 Parametric PDE surfaces

Parametric PDE surfaces are regarded as the solution to
an elliptic partial differential equation in the paramet-
ric domain. This is an excellent surface generation tech-
nique since the discretisation of the operator associated
with elliptic PDE is an averaging process of the solution
neighbourhood of the PDE guaranteeing that the surface
obtained will possess a certain degree of smoothness de-
pending upon the order of the PDE.

Parametric PDEs have proved to be extremely use-
ful for the implementation of surface generation meth-
ods and to address problems such as shape blending
[5], optimisation [38], interactive design [41] and interac-
tive sculpting [16]. Furthermore, the work presented in
[6] shows that parametric PDE surfaces obtained from
closed analytic solutions to the generating PDE can be
represented in terms of B-splines [6].

For the purposes of illustrating the most relevant
mathematical details concerning the formulation of a
parametric PDE surface, the Bloor-Wilson PDE method,
which is a standard method for surface generation, is dis-
cussed below.

4.1 The Bloor-Wilson PDE method

The Bloor-Wilson PDE method has been developed in
[10] and was originally introduced as a blending tool [5]
from where its use has been extended to several other ar-
eas. This method is a surface generation technique over-
coming a number of problems inherent to polynomial
surfaces. Additionally, it is an excellent choice for free-
form surface generation since it only requires boundary
curves as input, which can be determined in a very intu-
itive manner [7]. A summarised description of the math-
ematical foundations of the Bloor-Wilson PDE method
is outlined below.

In principle, there is no restriction upon the type and
order of the PDE to be solved. However, elliptic PDEs
have been chosen to develop this technique since this
kind of PDE is regarded as an averaging process through-
out the entire surface. The order of the PDE determines
the smoothness of the surface since the boundary con-
ditions required to solve the PDE are usually given in
terms of positional and derivative requirements.

The original formulation of Bloor-Wilson PDE method
consists of producing a parametric surface X(u, v) by
finding the solution to a PDE of the form,

(
∂2

∂u2
+ a2 ∂2

∂v2

)r

X (u, v) = 0 , (8)

where u and v represent the parametric surface coordi-
nates, which are then mapped into the physical space;
i.e., (x(u, v), y(u, v), z(u, v)), a is a parameter inherent
to the PDE mostly restricted to a ≥ 1 and r determines
the order of the PDE.

Equation (8) is a PDE of order 2r. However, most
of the work related to this method is based on fourth
order PDEs; i.e., r = 2 and therefore four boundary con-
ditions are required. These are generally given by a set
of two positional boundary conditions and the value of
the first derivative at the same positions. Notice that
when a = 1 and r = 2, Equation (8) is known as the bi-
harmonic equation, which models some phenomena oc-
curring within areas such as fluid and solid mechanics
and therefore, many alternatives for solving it have been
developed.

The solution to Equation (8) can be found using dif-
ferent approaches, varying from analytical to fully nu-
merical ones. However, the selection of full analytical
methods gives rise to some topological restrictions on
the objects represented by this type of solution. A typ-
ical example of a PDE surface obtained by using the
Bloor-Wilson PDE method is presented in Figure 1. The
generating boundary curves are shown in Figure 1.a, the
top and bottom circles represent the positional boundary
conditions whereas the inner ones are used to calculate
the value of the derivative boundary conditions. The re-
sulting PDE surface is outlined in Figure 1.b.

The former example shows, in a schematic manner, the
foundations of this method, enhancing the fact that only
some boundary curves are required to obtain a smooth
surface. However, the simplicity of the surface in this
example does not give an idea of the surface that can
be generated using this method. For this purpose, ad-
ditional examples of complex geometries are presented
in Figure 2 and Figure 3. The PDE representation of
two objects that can be mathematically characterized are
shown in Figure 2, where a PDE surface corresponding
to a sea shell is schematized in Figure 2.a and a surface
representation of a Klein bottle is outlined in Figure 2.b.

PDE surface representations of complex geometries are
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(a) (b)

Fig. 1 Example of a PDE surface generated using the Bloor-
Wilson PDE method. The boundary curves are shown in (a)
and the corresponding PDE surface is shown in (b).

(a) (b)

Fig. 2 Examples of a PDE surfaces of geometries possessing
mathematical expressions. A PDE surface corresponding to
a sea shell is shown in (a) and a Klein bottle is represented
in (b).

shown in Figure 3. A PDE surface representation of a
dolphin is shown in Figure 3.a and a PDE surface asso-
ciated with a human face is shown in Figure 3.b. These
PDE surfaces have been obtained by blending several
surface patches.

(a) (b)

Fig. 3 Examples of a PDE surfaces of complex geometries.
These surfaces were obtained by using the Bloor-Wilson PDE
method. A representation of a dolphin is shown in (a) and a
PDE surface representation of a face is shown in (b).

It is noteworthy to mention that when the domain is

restricted to 0 ≥ u ≥ 1 and 0 ≥ v ≥ 2π, the solution
is also restricted to the use of periodic boundary condi-
tions. The solution to Equation (8) can then be expressed
in terms of a Fourier series. The full details of such a so-
lution are presented in [10]. The Fourier series associated
with the solution of Equation (8) is in general an infinite
series and therefore, the solution is approximate with the
property of exactly satisfying the boundary conditions
through the addition of a remainder term. However, the
solution is exact if all the boundary conditions can be
expressed in terms of a finite Fourier series.

As for the case when the domain consists of the rect-
angular region restricted by 0 ≥ u ≥ 1 and 0 ≥ v ≥ 1,
an eigenvalue solution has been developed. The mathe-
matical details of this solution are presented in [11].

Notice that the method itself is not restricted to these
cases since full numerical techniques such as finite differ-
ences or finite element can be employed for finding the
solution to Equation (8).

Furthermore, the compatibility between surfaces gen-
erated by the PDE method and the ones generated by
more traditional techniques such as B-splines and Bézier
surfaces has been thoroughly studied. Works such as [32]
and [33] present Bézier solutions to elliptic PDEs. PDE
surfaces have also been shown to be compatible with B-
spline representations [6].

4.2 Alternatives to the Bloor-Wilson PDE method

Variations of the PDE method formulated by Bloor and
Wilson have been accomplished. For instance, the work
presented in [47] uses the following elliptic PDE,

„
a

∂6

∂u6
+ b

∂6

∂u4∂v2
+ c

∂6

∂u2∂v4
+ d

∂6

∂v6

«
X (u, v) = 0, (9)

where a, b, c and d are shape control parameters.
The solution to Equation (9) is similar to that pre-

sented in [10] with the difference that the series is given
in terms of a set of basis functions (this set is found ac-
cording to the set of boundary conditions for each prob-
lem in particular). This formulation offers three addi-
tional shape control parameters, represented by a, b and
c, which may be thought an improvement; however, the
added advantage of having such parameters is difficult
to assess since no physical meaning can be associated
with them. Equation (9) has also been used for blending
surfaces where curvature continuity is guaranteed [46].

4.3 Parametric PDE surfaces obtained from
physics-based models

The imposition of energy constraints to parametric sur-
faces has proved useful in application where local and
global deformations are required. Such constraints have
been applied under a number of different circumstances.
Some examples of this are,
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– B-spline surfaces have been sculpted interactively by
applying linear constraints such as local pressures
and sectional forces [13], [12].

– Elasticity theory has been employed to manipulate
surfaces representing flexible materials, providing the
model with more realism especially when such a model
is used for animation purposes. The work presented
in [37] shows different examples whereby different en-
ergy constraints have been imposed according to the
elastic properties required by each example.

– Geometric constraints have also been employed. Such
constraints are expressed as energy functions which
are then responsible for parametrically deforming a
given geometric model. Such a deformation may take
place either locally or globally, depending on the type
of constraint employed [2], [44].

Elliptic PDEs have also been used for generating para-
metric PDE surfaces satisfying physics-based models where
the acceleration and velocity of the surface can be in-
cluded so that the surface is allowed to deform accord-
ing to external forces [17]. This approach introduces new
general and flexible constraints; and, the system can be
solved using finite differences. This technique has suc-
cessfully achieved local and global deformations of PDE-
based surface models such as sculpting and blending [21].
This approach expands the topological limitations of the
original formulation of the Bloor-Wilson PDE method.

A nonlinear second order system of differential equa-
tions describes the behaviour of a physics-based model,
which in general form is given by,

M
∂2X
∂t2

+ D
∂X
∂t

+ KX = f , (10)

where M , D and K account for the mass, damping and
stiffness matrices associated with the object respectively
and f represent the total external force acting on the
surface.

Equation (8) can be rewritten as,

AX = g , (11)

where A is the matrix associated with the finite difference
expansion and g is vector. Thus, the dynamic version of
the surface is given by,

M
∂2X
∂t2

+ D
∂X
∂t

+ (K + A)X = f + g . (12)

Again, semi-implicit finite difference methods can be
employed to find the solution to Equation (12). Fur-
ther details concerning the physics-based formulation are
given in [18].

Another type of physics-based parametric PDE sur-
face is Dynamic NURBS, also known as D-NURBS. They
are a generalisation of NURBS in which physical proper-
ties such as mass distribution, internal deformation en-
ergies and external forces are incorporated to the model.

This incorporation leads to solving a set of nonlinear dif-
ferential equations by integrating them numerically [35].
This type of PDE surfaces avoids the complications in-
herent in the manipulation of standard NURBS, since
the designer is no longer required to manipulate control
points directly.

Variational geometry formulations have also been used
to produce parametric PDE surfaces [43] where differ-
ent geometric constraints on the resulting surface can be
imposed. These constraints are generally related to the
smoothness of the surface and are particularly useful in
surface fairing [29].

5 Applications of PDE surfaces

PDE surfaces have been successfully employed for devel-
oping techniques relevant to computer aided geometric
design. Given the versatility with which PDE surfaces
can be formulated to address such techniques, there are
occasions where more than one formulation is available
for solving a specific problem and in some cases, both im-
plicit and parametric PDE surfaces can be employed in
the same given problem. Thus, the classification of PDE
surfaces according to their use in computer aided geo-
metric design is given by providing a brief description of
the problem followed by the different PDE formulations
developed so far addressing such a problem.

5.1 Surface generation

The increasing demand of realism and real-time applica-
tions in computer aided geometric design has resulted in
the constant development of efficient surface generation
techniques. PDE surfaces have proven to be powerful in
such tasks and given the versatility of this kind of sur-
face, several techniques have been developed. Two are
the main areas where PDEs have been introduced as a
surface generation tool are interactive design (also known
as free-form design) and blending.

5.1.1 Interactive design

Computer Aided Design (CAD) systems can benefit from
interactive design tools based on PDE formulations where
the main control of the surface is gained through the
manipulation of the boundary conditions. An important
remark must be made stressing that the user requires
no familiarity with the mathematical details concerning
PDEs since the user is only required to define the bound-
ary conditions in terms of curves. Both implicit and para-
metric PDE surfaces have been used as the foundations
of tools promoting interactive design.

Implicit PDE surfaces arising from elliptic PDEs have
been used in [19] where either scattered points, cross-
sectional or sketch curves outlining the rough shape of
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the object are chosen as boundary conditions. Addition-
ally, [19] presents graphical examples obtained for these
three types of boundary conditions.

Parametric PDE surfaces have also been used for in-
teractive design purposes. The PDE method formulated
by Bloor and Wilson has served as the foundation for
the development of surface generation interactive tools.
The work presented in [28] uses a sixth order elliptical
PDE for this purpose and gives a detailed explanation
regarding the mathematics inherent in the method. For
instance, the procedure by which the required derivative
conditions are obtained is outlined. Given that this in-
teractive tool has been designed assuming that the user
possesses no mathematical background, the user is re-
quired to generate six boundary curves from which the
interactive tool calculates the required derivatives. Free-
form generation examples of objects such as a ship hull,
a phone handset and a marine propeller are discussed in
[7] where explicit mathematical functions determine the
boundary conditions.

5.1.2 Shape blending

Shape blending refers to the process by which two or
more surface patches are joined. This process must be
carried out in a way such that a certain degree of smooth-
ness is achieved at the regions where these patches join.
PDEs offer a natural approach for addressing this prob-
lem. The degree of smoothness is determined by the order
of the PDE in use.

Parabolic PDEs have been used for surface blending,
obtaining excellent results. For instance, the work out-
lined in [45] presents the results of blending three cylin-
ders at different angles. Three different velocity fields
have been used to carry out the blending process namely:
mean curvature flow, fourth and sixth order flows. These
results are clearly illustrated by the graphical results.
However a number of parameters are necessary to achieve
these results.

By contrast, the blending properties of the Bloor-
Wilson PDE method are such that the only requirement
to achieve a fast and smooth blend between two surface
patches is either a common boundary condition at the
joining region or a boundary condition lying on one of
the surface patches itself. Works such as [5], [30] describe
the use of this PDE method for achieving smooth blends.
The reader is referred to [5] where several examples of
second, fourth and mixed order blends are detailed that
are easy to reproduce.

The alternative formulation of the Bloor-Wilson PDE
method has also been used for surface blending [46] where
a sixth order elliptic PDE has been chosen for accom-
plishing such a purpose. Comparisons between closed-
form solutions and the one proposed in this work are
shown together with some interesting examples, one of
which involves the blending of a wrinkled surface wtih a
conic section.

5.2 Surface processing

Another major category in which the use of PDE sur-
faces in computer aided geometric design is surface pro-
cessing. The phenomena falling into this category are
those concerning the total or partial enhancing of an al-
ready existing surface. Image inpainting, noise reduction,
N-sided hole filling and surface fairing are some of the
most relevant processes.

5.2.1 Image inpainting

Image inpainting is defined as the technique of modify-
ing an image in an unnoticeable manner. Implicit PDE-
based methods have been adopted for such purpose. In
particular, Willmore-type flows have been used in [4].
This work presents some examples illustrating how this
technique has been successfully employed to remove un-
wanted objects from pictures. However, there are some
restrictions on the size of the region where this technique
is applied when the texture of such a region needs to be
preserved.

5.2.2 Noise reduction

Noise reduction is another area where PDE surfaces have
been used. In particular, parabolic PDEs giving rise to
implicit PDE surfaces have proved to be a useful tool for
reducing noise whilst preserving the image details. Ex-
amples of some noise-reducing surface diffusion flows are
presented in [3] where two approaches for the problem
are outlined. The first of these approaches consists of us-
ing an isotropic diffusion flow; i.e. the flow acts uniformly
along every direction. The graphical example associated
with this flow illustrates how the noise within affected ar-
eas is gradually removed. The second approach exploits
the advantages of anisotropic diffusion flows, which act
differently along different directions. Again, it can be ap-
preciated how the noise is removed leaving the details of
the image unaffected. Diffusion flows are also used in [31].
However, these flows are used for mapping noisy images
into three-dimensional implicit surfaces. The work pre-
sented in [1] is another example on how anisotropic diffu-
sion is used as a noise reduction tool. The latter is capa-
ble of smoothing surface successfully whilst noise is also
reduced, which is particularly useful in cases where the
surface is generated from unfiltered or corrupted data.

5.2.3 N-sided hole filling

The problems of N-sided hole filling consists of construct-
ing a surface to fill such a hole with specific continuity re-
quirements at the boundary. Velocity fields such as mean
curvature flow, fourth and sixth order flows have been
employed to construct implicit PDE surfaces, aiming to
fill such holes successfully. An example to this effect is
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presented in [45] where the nose of a human face is recon-
structed. As expected, the results obtained by the sixth
order flow are the smoothest.

5.2.4 Surface fairing

Surface fairing accounts for the process of generating
free-form surfaces satisfying aesthetics requirements. Im-
plicit PDE surfaces resulting from second and fourth or-
der flows have been employed in [36] providing an ex-
cellent example of an algorithm for smoothing arbitrary
triangular meshes. This algorithm uses a fourth order ve-
locity field. Each of the steps considered in the algorithm
is outlined and the examples presented show the poten-
tial of the technique. For the interested readers in the
pragmatic mathematical details of the implicit PDE for-
mulation, this work is highly recommended as a further
reading.

5.3 Design analysis and optimisation

Geometric PDE surfaces offer a natural environment for
developing tools capable of carrying out design analysis
and optimisation based on the physical properties inher-
ent to a specific problem. The process of optimising the
shape of an object involves a target function establish-
ing the requirements to be fulfilled. This target function
is given in terms of a set of design parameters that are
iteratively changed until the target function is satisfied.

Furthermore, PDE-based optimisation formulations
present a significant time reduction when compared to
other optimisation techniques available. Examples of the
progress achieved by using PDE surfaces in these areas
are presented in [27] [14], [9], [42] and [38], all of which
are based on the Bloor-Wilson PDE method.

5.3.1 Design analysis

Design analysis as such is carried out in [27], [14] and [9]
where parameters characterizing a given specific object
are found. For instance, [27] and [9] focus on the extrac-
tion of parameters characterizing aircraft geometry. The
former aims to extract the design geometry from a given
geometry, whereas the latter illustrates the changes of
geometry by changing some of the design parameters.
The work presented in [14] portrays the characterization
of a marine propeller using a small set of parameters
and a sixth order version of the Bloor-Wilson PDE for-
mulation. Emphasis must be made that these works ma-
nipulate the set of parameters defining each object for
purposes of illustration.

The work presented in [8] portrays another applica-
tion related to design analysis. The Bloor-Wilson PDE
method is employed here to visualise the physical proper-
ties or functional performance of a given object. Temper-
ature and stress distributions are some of these proper-
ties. Here, the target function mathematically describes

the physical property of interest and no change is made
to the set of design parameters.

5.3.2 Optimisation

By contrast, optimisation processes are required to sat-
isfy a target function and thus the manipulation of the
design parameters is oriented towards this purpose. Again,
the method formulated by Bloor and Wilson has proved
to be useful for such purposes as shown in [42] and [38].
In particular, [42] presents an example with biological
applications. This example predicts stable structures of
vesicles by using the surface energy of the membrane
as the target function. Industrial applications have also
been found. For example, the work presented in [38] de-
scribes the optimal design of yoghourt containers where
their thickness is minimised subject to constraints on the
stress distribution around the walls of the container.

5.4 Other applications

There are a number of applications that uses PDE sur-
faces. However, given the nature of such applications,
their classification is not a trivial exercise. Among such
applications are subdivision, geometric manipulations and
animation.

5.4.1 Subdivision

Alternative surface generation techniques such as sub-
division can also benefit from the versatility offered by
PDE surfaces. Subdivision is a surface generation tech-
nique by which an original set of points defining a rough
shaped object is modified by adding additional surface
points according to a given subdivision rule. In spite of
presenting a certain degree of smoothness, subdivision
surfaces lack collision detection mechanisms and in some
cases this leads to unwanted overlapping from which
topological restrictions are imposed [15]. Implicit PDE
surfaces have been employed to address this problem and
thus several velocity flows have been tried. Gaussian cur-
vature, surface diffusion, and Willmore flows have been
tried in [45] for addressing this problem. This work out-
lines the necessary mathematical background together
with some graphical examples where the different flows
are employed to evolve the surfaces after subdividing the
surface one.

Parametric surfaces have also been employed in sub-
division processes. For instance, the work presented in
[15] presents an alternative for modelling the dynamics
of clothes in animation where an energy functional is
proposed and finite element techniques are used to find
the solution.
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5.4.2 Animation

Animation is an area where PDE surfaces are potentially
useful. Processes such as morphing, facial expression and
movement are some of the processes that can directly
benefit from their use. One of the reasons why PDE sur-
faces represent a powerful mechanism for overcoming the
limitations inherent to these problems is the number of
parameters describing a given PDE surface is relatively
small. A mathematical characterization of such a process
can be obtained through the manipulation of the PDE
or its boundary conditions.

As mentioned before, cloth dynamics in animation
has been modelled in [15]; however, this approach does
not take full advantage of the PDE formulation.

Morphing refers to the process by which an object
is transformed into another and, in the vast majority of
cases, this process is required to take place as smoothly
and aesthetically as possible. Parametric PDE surfaces
are especially useful for such purposes since objects are
basically determined by a set of boundary conditions.
Thus, a suitable parameterised combination of the bound-
ary conditions of the two objects to be morphed will
lead to a smooth and fast transition between the objects.
The Bloor-Wilson PDE method in particular offers some
other alternatives when restricted to the periodic case.

The mathematical characterization of the movement
of an object in animation will significantly reduce time
and work involved in such a process. Again, the Bloor-
Wilson PDE method is regarded as an excellent choice to
accomplish this purpose. Both morphing and character-
ization of movement can take advantage of mathemat-
ical properties inherent to the solution of Equation (8)
restricted to the exclusive use of periodic boundary con-
ditions where the resulting PDE surfaces are character-
ized by the spine. Mathematically speaking, the spine of
a surface is a curve described by a polynomial function,
which can be thought as the skeleton of the PDE surface
[39]. The spine of a PDE surface has been proved to be
a powerful tool for geometric manipulations of the entire
surface [40].

6 Other aspects of computer graphics related to
PDEs

Computer graphics industry has recently been highly in-
terested in the simulation of natural phenomena since
the increasing demand for special effects concerning the
movement of smoke, water and fire among others have
posed some interesting problems. The physics associated
with these phenomena are described by very complicated
PDEs for which only elaborate and time-consuming nu-
merical solutions are available. Thus, the task of simulat-
ing such phenomena in computer graphics is not a sim-
ple one since the PDE associated with a particular phe-
nomenon has to be simplified so that a certain amount of

realism is kept, solved in virtually real time and properly
applied to the graphics environment. Level set methods
have proved useful in addressing these problems. [25].

6.1 Water

One of the greatest challenges in computer graphics is
the animation of water or other liquids. The specific sce-
narios where such animation may take place vary from
cascades to pouring liquids into transparent containers.
The key feature to achieve this kind of modelling consists
of accurately separating the liquid from the air. A solu-
tion to this problem is presented in [22]. An approach
called the particle level set method has been employed
where the front of the water surface is thickened. For
the sake of brevity, the reader is referred to this work
if he or she is interested in details of the mathematical
formulation. The results obtained by this technique are
illustrated by examples in which a glass is filled with
water, achieving an acceptable degree of realism.

6.2 Smoke

Realistic modelling of smoke is still regarded as a com-
plex and challenging problem due to the complex nature
inherent in the motion of gases. Computer-based fluid
dynamics algorithms which enable to model such a phe-
nomenon that can be modified and adapted to computer
graphics and animation are already available in the liter-
ature. The work described in [26] outlines an algorithm
that uses Euler equations for inviscid incompressible flu-
ids and solves them using a technique called vorticity
confinement, which is extensively found in computer fluid
dynamics literature. This technique is capable of retain-
ing the short-scale features inherent in smoke, such as
rolling features.

6.3 Fire

The intrinsically dangerous nature of fire is one of the
reasons for which its modelling is constantly being im-
proved. Combustion processes are characterized by the
expansion of fuel, which is responsible for the turbulence
associated with this process. The method proposed in
[34] uses a dynamic implicit surface to represent the re-
action zone, where the thin film approximation produces
acceptable visual results. The reader is referred to [34]
for further details where the modelling of this process in-
volves several stages which require careful consideration.

7 Conclusions

This work presents a synopsis of the uses given to par-
tial differential equations in areas related to computer
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aided geometric design. PDEs are a very powerful tool
in geometric design since some degree of smoothness is
guaranteed, depending on the order of the PDE gener-
ating or modifying a surface. PDE surfaces are mainly
classified as implicit or parametric PDE surfaces. Im-
plicit PDE surfaces are generally obtained from parabolic
PDEs whereas parametric PDE surfaces are associated
with elliptic ones.

A brief description of some of the flows employed to
find implicit PDE surfaces together with the problems
each of these flows address has been given. The latter
vary from surface generation to noise reduction and fair-
ing. As far as parametric PDE surfaces are concerned,
the Bloor-Wilson PDE method, which is based on the
solution to an elliptic PDE, has proved to be a powerful
tool for interactive surface generation since a very small
number of parameters is required to characterize the sur-
face. Alternative formulations to the Bloor-Wilson PDE
method have been presented where physics-based models
have been incorporated.

Elliptic PDEs have also been used to generate im-
plicit PDE surfaces with the aim of taking advantage
of the parametric PDE formulation without any restric-
tions on the topology of the object to be created. How-
ever, numerical techniques are likely to be used to find
their solution.

PDEs have also been used for addressing other prob-
lems related to surfaces in computer graphics. The graph-
ical modelling of natural phenomena such as water, smoke
and fire is not a simple task since the PDE equations
modelling these phenomena in the real world are very
complicated. Thus, the aim is to simplify these equa-
tions so that they can be solved rapidly and accurately
enough to preserve the realism with which these phe-
nomena behave.

PDEs are powerful tools for applications related to
geometric modelling. These limitations are directly asso-
ciated with the mathematical challenges related to the
stability and accuracy of numerical PDEs together with
the speed with which such solutions can be obtained.
Additionally, like polynomial surfaces, most PDE meth-
ods generate parametric surfaces and therefore problems
inherent to parametric representation of surfaces can be
considered as limitations. For example it is difficult to
represent objects with arbitrary topology using paramet-
ric PDEs.

The introduction of PDEs to computer aided geo-
metric design has occurred fairly recently and therefore
their full potential remains to be fully exploited, offer-
ing further lines of investigation where the mathematical
properties of PDEs can be fully used.
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