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Metabolic syndrome (MetS) represents a complex cluster-
ing of cardiometabolic traits, including hypertension, 

insulin resistance, glucose intolerance, and dyslipidemia, all of 
which increase the risk of developing type 2 diabetes mellitus 
and cardiovascular disease.1 Despite established environmental 
risk factors and genome-wide association study (GWAS) hits 
that link genetic variation to MetS constituents, the molecular 
and cellular events underlying its development remain incom-
pletely understood.2,3

Chronic low-grade inflammation and innate immune sys-
tem overactivation are now recognized causes of type 2 diabe-
tes mellitus and MetS.4,5 In particular, the alternative pathway 
(AP) has received attention for its potential causal role in 
cardiometabolic disease.6 AP activation requires CFB (com-
plement factor B) to bind C3 to form C3B, which opsonises 

pathogens and contributes to the formation of the membrane 
attack complex.6 Thus, CFB is fundamental to pathogen clear-
ance and host cell apoptosis. However, increased circulating 
CFB has been found in patients with type 2 diabetes mellitus,7 
and expression of adipose tissue CFB correlates significantly 
with fasting glucose and circulating lipids.8 Elevated circulat-
ing CFB has also been found to increase the risk of endothelial 
dysfunction9 and coronary heart disease.10

Because of the complex genetic basis of human MetS, the 
spontaneously hypertensive rat (SHR), which exhibits hyper-
tension, insulin resistance, and dyslipidemia, has been exten-
sively studied as a MetS model.11–13

Multiple studies have identified SHR genes associated 
with features of MetS, many of which show conserved pathol-
ogies in humans.14–17

Abstract—CFB (complement factor B) is elevated in adipose tissue and serum from patients with type 2 diabetes mellitus and 
cardiovascular disease, but the causal relationship to disease pathogenesis is unclear. Cfb is also elevated in adipose tissue 
and serum of the spontaneously hypertensive rat, a well-characterized model of metabolic syndrome. To establish the role of 
CFB in metabolic syndrome, we knocked out the Cfb gene in the spontaneously hypertensive rat. Cfb−/− rats showed improved 
glucose tolerance and insulin sensitivity, redistribution of visceral to subcutaneous fat, increased adipocyte mitochondrial 
respiration, and marked changes in gene expression. Cfb−/− rats also had lower blood pressure, increased ejection fraction 
and fractional shortening, and reduced left ventricular mass. These changes in metabolism and gene expression, in adipose 
tissue and left ventricle, suggest new adipose tissue-intrinsic and blood pressure-independent mechanisms for insulin 
resistance and cardiac hypertrophy in the spontaneously hypertensive rat. In silico analysis of the human CFB locus 
revealed 2 cis-regulated expression quantitative trait loci for CFB expression significantly associated with visceral fat, 
circulating triglycerides and hypertension in genome-wide association studies. Together, these data demonstrate a key 
role for CFB in the development of spontaneously hypertensive rat metabolic syndrome phenotypes and of related traits 
in humans and indicate the potential for CFB as a novel target for treatment of cardiometabolic disease.   (Hypertension. 
2017;70:00-00. DOI: 10.1161/HYPERTENSIONAHA.117.09242.) • Online Data Supplement
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The rat Cfb gene resides within the major histocompat-
ibility region on chromosome 20p12.18 In SHR, this region 
has been demonstrated to be important in blood pressure 
regulation,19 serum cholesterol, adiposity, and glucose toler-
ance.20,21 In this study, we knocked out Cfb in SHR to test the 
hypothesis that Cfb is necessary for the full expression of car-
diometabolic pathophysiological traits in this model of MetS.

Methods
Detailed methods are available in the online-only Data Supplement.

Rats
Cfb−/− rats were generated using SHR/NCrl rats (Charles River, Margate, 
United Kingdom), by microinjecting Zinc-finger nuclease (ZFN) 
mRNA (Sigma), targeted to exon 6 of Cfb (target sequence: CCCCT 
CGGGCTCCATGaatatcTACATGGTGCTGGATG), into 1-cell stage 
SHR/NCrl embryos that were implanted into pseudopregnant rats. 
Heterozygous progeny, from a founder harboring a 19-base pair dele-
tion in Cfb, were intercrossed to homozygosity. A search for off-target 
events, conducted by whole genome sequencing confirmed the 19-base 
pair deletion. Six additional putative mutations, analyzed by Sanger 
Sequencing, were determined to be false positives (Table S1). Rats 
were housed with free access to food and water. All procedures were 
performed in accordance with UK Home Office regulations.

Statistics
Unpaired t test or 2-way ANOVA (Minitab Express) were used to 
assess differences between genotype and treatment. All results are 
mean±SEM. P<0.05 was considered significant.

Results
Generation of a Cfb Knockout Rat
Using data from a quantitative trait transcript analysis of recom-
binant inbred strains derived from a SHR×Brown Norway (BN-
Lx/Cub) cross,22 we identified Cfb transcript levels as uniquely 
and strongly correlated significantly across the recombinant 
inbred strains for metabolically relevant traits (glucose uptake 
in isolated adipocytes, r2=−0.65, P

(adj)
=0.0003; basal lipogenesis 

in epididymal fat, r2=−0.64, P
(adj)

=0.0002; serum high-density 
lipoprotein cholesterol, r2=−0.64, P

(adj)
=0.0005) and signifi-

cantly differentially expressed in adipose tissue between paren-
tal strains (SHR versus Brown Norway, 1.47-fold P

(adj)
<0.05). 

Overexpression in SHR adipose tissue was confirmed by quanti-
tative polymerase chain reaction by comparing a further insulin 
sensitive/normotensive Wistar Kyoto strain (WKY/NCrl; Figure 
S1A). Cfb was also overexpressed in SHR left ventricle (LV), 
but not liver, compared with WKY (Figure S1A). Cfb over-
expression in SHR was associated with increased AP activity 
compared with WKY (Figure S1B). Analysis of the Cfb gene 
and its adjacent region revealed 14 variants unique to SHR, not 
present in Brown Norway or WKY; 2 variants reside upstream 
of the transcription start site (Figure S1C). To investigate the 
potential causative role of Cfb in the cardiometabolic traits of 
SHR, a 19-base pair deletion in exon 6 of the Cfb gene in the 
SHR germline was made using ZFNs (Figure S1D). Abolition of 
Cfb expression was confirmed by quantitative polymerase chain 
reaction and immunoblot (Figure S1E), and loss of Cfb function 
was confirmed by ablation of serum AP activity (Figure S1F).

Glucose Homeostasis
To test whether Cfb ablation affected glucose homeostasis in 
SHR, oral glucose tolerance and insulin sensitivity (IVITT 

[intravenous insulin tolerance test]) were assessed. Fasting 
plasma glucose concentration in Cfb−/− was significantly 
lower than SHR (Figure 1A; SHR, 4.62±0.10 versus Cfb−/−, 
4.25±0.09; P=0.013). Throughout the oral glucose tolerance, 
blood glucose remained lower, and area under the glucose curve 
was significantly reduced in Cfb−/− compared with SHR; insulin 
concentrations were similar in both groups (Figure 1A and 1B). 
Together with the G:I ratio (ratio of area under the curve of 
plasma glucose concentration to area under the curve of plasma 
insulin concentration; Figure 1C), this indicated an improve-
ment in insulin sensitivity, further demonstrated in IVITTs by a 
significant 48% increase in insulin-stimulated glucose disposal 
(K

ITT
) in Cfb−/− compared with SHR (Figure 1D).

Adipose Tissue Function
To determine whether Cfb affects adipose function, as sug-
gested by our previous quantitative trait transcript analy-
sis and metabolic phenotyping, we measured adipose tissue 
depots masses. Relative wet masses of visceral (epididymal 
adipose tissue [EAT]; mesenteric adipose tissue [MAT]; and 
retroperitoneal adipose tissue) and brown fat (brown adipose 
tissue [BAT]) were significantly reduced in Cfb−/− rats com-
pared with SHR, despite similar total body mass (269±20 
versus 265±31 g; P>0.05; Figure 2A); however, Cfb−/− had 
significantly more relative subcutaneous fat (SAT; Figure 
2A). Overall, total fat mass was similar (SHR, 42.9±1.4 ver-
sus Cfb−/−, 42.8±1.4 g/kg; P>0.05). Stereological analysis 
of EAT showed that Cfb−/− had significantly fewer, similar-
sized adipocytes than SHR (SHR, 4.06±0.21 versus Cfb−/−, 
4.13±0.32×105 μm3 P>0.05; Figure 2B). Further, serum anal-
ysis of circulating lipids and adipokines demonstrated signifi-
cant decreases in levels of cholesterol, triglycerides, and high 
molecular-weight adiponectin (−Δ48%), in Cfb−/− compared 
with SHR; however, circulating total adiponectin and leptin 
were similar (Table S4).

Given the varied metabolic contributions of different fat 
depots found in the Cfb−/− rat, we analyzed transcript abundance 
for markers of oxidation (Cpt1 and Aco1), beigeing (Ucp1 and 
Pgc1a), insulin sensitivity (Slc2a4), lipid metabolism (fatty acid 
synthase [Fasn]), and adipokines (Adipoq and Lep). In EAT, 
Pgc1a, Cpt1, Aco1, and Slc2a4 were significantly increased in 
Cfb−/− compared with SHR (Figure 2C). In SAT, Aco1, Ucp1, 
Fasn, and Adipoq were significantly elevated, whereas Pgc1a 
was reduced, in Cfb−/− compared with SHR (Figure 2D). In 
BAT, Pgc1a and Slc2a4 were significantly increased in Cfb−/− 
compared with SHR, whereas Ucp1 and Fasn were signifi-
cantly decreased (Figure 2E). Lep was significantly reduced in 
all Cfb−/− depots compared with SHR (Figure 2C through 2E).

To determine whether transcript changes were associated 
with altered adipose tissue respiration, we analyzed epididy-
mal adipocyte metabolic rate. Maximal and basal respiratory 
rates were significantly greater in Cfb−/− than in SHR, +Δ1.64, 
and +Δ1.96-fold, respectively (Figure 2; Figure S2A). Further, 
reserve capacity and leak respiration were both significantly 
increased (Figure S2B and S2C). However, ATP-linked respira-
tion and ATP-generation efficiency were similar (Figure S2D 
through S2E). CoxIV protein abundance—a mitochondrial 
marker—was similar in both Cfb−/− and SHR (Figure S2F).

There were no differences in body temperature or activity 
associated with Cfb deletion (Figure S3A and S3B).
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Cardiovascular Analyses
Cfb deletion reduced relative LV mass and cardiomyocyte diam-
eter by 10% compared with SHR; however, relative heart weight 
was similar between genotypes (Figure 3A and 3B; Figure S4A 
and S4B). Telemetrically measured systolic and diastolic blood 
pressures were significantly lower (−Δ7 mm Hg) in Cfb−/− than 
in SHR, and although heart rate was similar, rate pressure prod-
uct was significantly reduced (Figure 3C and 3D; Figure S4C 
through S4F). Serum aldosterone and transcripts for renal renin 
and hepatic angiotensinogen were all significantly reduced in 
Cfb−/− rats (Table S4, Figure S5A and S5B).

Early structural and functional changes in the heart were 
investigated using echocardiography. We confirmed that rela-
tive LV mass was significantly reduced in Cfb−/− compared with 
SHR; however, at this stage, LV wall thickness was not signifi-
cantly different (Table S5). Functionally fractional shortening 
and ejection fraction were significantly increased in Cfb−/− LV 
compared with SHR (Table S5). Given the similar heart rate and 
stroke volume, cardiac output was not significantly different 
(Table S5).

An acute hypertrophic challenge designed to investigate 
whether Cfb deletion conferred protection from cardiac stress, 

independent of blood pressure, showed that the rate pressure 
product was significantly reduced in Cfb−/− hearts in the 24 hours 
after isoproterenol treatment (Figure 3E and 3F; Figure S6A). 
Isoproterenol increased relative heart and LV mass similarly 
(Figure S6B and S6C). Transcripts related to cardiac hypertrophy 
were investigated in LV from isoproterenol and saline-treated 
rats. In saline-treated Cfb−/− rats, Nppa, Actc1, and Camk2d were 
significantly increased compared with SHR (Figure 4A, 4C, and 
4E); whereas Nppb was significantly decreased (Figure 4B). In 
isoproterenol-treated rats, Nppb increased marginally in Cfb−/− 
rats compared with SHR (Figure 4B). Acta1 in isoproterenol-
treated Cfb−/− rats was similar to both saline-treatment groups 
(Figure 4F). The ratio of Actc1:Acta1 was significantly greater in 
Cfb−/− compared with SHR, in saline-treated (317±43 versus 
138±18; P=0.05) and isoproterenol-treated rats (256±37 ver-
sus 53±9; P<0.005). Myh6 and Myh7 expression was similar 
between genotypes (Figure 4D; Figure S7).

Serum Markers of Inflammation
Given the function of Cfb in inflammatory responses, we 
determined the effect of Cfb−/− on Th-1 mediated inflamma-
tion by quantifying serum concentrations of cytokines (Il-2, 

Figure 1. Glucose homeostasis. A, 
Glucose concentration curve during 
oral glucose tolerance (OGTT; inset, 
area under the curve, area under the 
curve (AUC), glucose. B, Plasma insulin 
concentration curve of OGTT (inset; area 
under the curve insulin). C, G:I ratio, 
(AUCglucose:AUCinsulin). D, Insulin-stimulated 
glucose clearance (KITT). Spontaneously 
hypertensive rat (SHR), filled bars/
circles, Cfb−/−, open bars/circles. *P<0.05, 
**P<0.01, ***P<0.005. G:I indicates 
ratio of area under the curve of plasma 
glucose concentration to area under the 
curve of plasma insulin concentration.
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Il-6, Il-10, granulocyte macrophage colony stimulating fac-
tor, Ifn-γ, and Tnfα). We found significant decreases in serum 
concentrations of Il-10 and Ifn-γ in Cfb−/− rats compared 
with SHR. In addition, whereas Il-6 and Tnfα were detected 
in SHR, the cytokines were undetectable in sera from Cfb−/− 
rats. Granulocyte macrophage colony stimulating factor was 
similar in both groups, and in neither group was Il-2 detected 
(Table S4).

Analysis of GWAS Hits and cis-Expression QTLs  
at the Human CFB Locus
To determine whether genetic variants near CFB are associ-
ated with metabolic and cardiovascular disorders relevant 
to MetS (Table S3), we mined the NHGRI GWAS catalog 

(National Human Genome Research Institute) and located 18 
single-nucleotide polymorphisms (SNPs) associated with car-
diometabolic traits ≤1 Mb from CFB (Figure 5; Table S6). Six 
SNPs were found to be associated with type 2 diabetes mel-
litus, MetS, or visceral fat. Six further SNPs were related to 
circulating lipids. The remaining SNPs were associated with 
coronary heart disease and hypertension (Table S6).

We also investigated whether variants at the CFB locus 
are associated with CFB expression by mining GTEx datasets 
(the Genotype-Tissue Expression project) for CFB cis-expres-
sion quantitative trait loci (QTLs). Fifty-three SNPs were 
associated with CFB expression in 4 tissues (Figure 5; Table 
S7). One SNP, rs76846904, close to the HLA-DRB5 gene, is 
highly correlated with CFB gene expression in subcutaneous 

Figure 2. Adipose tissue and adipocyte 
morphometry, gene expression, and 
respiratory capacity. A, Adipose tissue 
wet masses, including subcutaneous 
(SAT), epididymal (EAT), retroperitoneal 
(RAT), mesenteric (MAT), and brown (BAT; 
n=6 per group). B, Epididymal mean cell 
number (n=6 per group). C, EAT, (D) SAT, 
(E) BAT gene expression levels in Cfb−/−, 
normalized to Actb (n=5 per group). F, 
Maximal respiratory rates in primary 
epididymal adipocytes. Spontaneously 
hypertensive rat (SHR), filled bars, Cfb-/-, 
and open bars. Aco1 indicates aconitase 
1; Adipoq, adiponectin; Cpt1, carnitine 
palmitoyltransferase I; Fasn, fatty acid 
synthetase; normalized expression, gene 
of interest normalized to β-actin; Lep, 
leptin; Pgc1a, peroxisome proliferator-
activated receptor gamma coactivator 
1 alpha Slc2a4, solute carrier family 2 
member 4; and Ucp1, uncoupling protein 
1. *P<0.05, **P<0.01, ***P<0.005. by guest on A
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adipose tissue (effect size, 0.78; P=0.000015) and within 100 
kb of GWAS hits for visceral adiposity, serum cholesterol, and 
coronary heart disease.

The influence of the 18 GWAS SNPs, or any of their proxies 
(a total of 280 SNPs), on gene expression across 9 tissues was 
investigated using the GTEx Portal. Four SNPs were significantly 
associated (false discovery rate<0.05) with CFB expression in tis-
sues of interest (Figure 5; Tables S6 and S7). Two SNPs, correlat-
ing with CFB expression in “adipose subcutaneous” and “artery 
aorta”, respectively, are proxies for rs13196329 and rs2247056, 
which are associated with visceral fat and triglycerides in the 
GWAS catalog (Table, Figure 5). Two further SNPs were signifi-
cantly associated with increased CFB expression in “heart LV” 
and correspond to the same SNP (rs805303) that is associated 
with increased systolic and diastolic blood pressure and hyper-
tension in the GWAS catalog (Table; Figure 5).

Discussion
We tested the hypothesis that Cfb is necessary for the full 
expression of cardiometabolic pathophysiological traits in the 
SHR model of MetS. Through ZFN-mediated gene knockout, 
we showed that the Cfb-deficient (Cfb−/−) SHR has improved 
glucose tolerance and insulin sensitivity, along with favor-
able adipose tissue distribution, adipose oxidative capacity, 

and reduced circulating lipids and proinflammatory cytokines 
compared with parental SHR. Further, Cfb−/− rats had reduced 
blood pressure that was associated with increased ejection 
fraction and fractional shortening and reduced LV mass. The 
human CFB locus—a gene-rich region within the major histo-
compatibility complex—contains several GWAS hits for car-
diometabolic traits, including coronary heart disease, blood 
pressure, MetS, type 2 diabetes mellitus, serum lipids, and 
visceral fat. These colocalize with cis-expression QTLs asso-
ciated with expression of CFB in subcutaneous adipose tissue 
and other tissues, indicating that variation in CFB expression 
may underlie, in part, the GWAS hits at this locus.

Glucose intolerance, insulin resistance, visceral adiposity, 
and dyslipidemia are the key metabolic features of MetS that 
increase the risk of type 2 diabetes mellitus.23 In our study, 
Cfb−/− rats had reduced visceral but increased subcutaneous 
fat. To investigate potential molecular changes associated 
with favorably altered fat distribution and ameliorated glu-
cose homeostasis in Cfb−/− rats, we investigated transcripts 
central to adipose tissue metabolism. Reduced EAT mass in 
Cfb−/− rats was because of reduced adipocyte number rather 
than altered adipocyte volume. Pgc1a, Cpt1, and Aco1 were 
upregulated in Cfb−/− rats, suggestive of increased adipocyte 
oxidative phosphorylation, which we confirmed by Seahorse 

Figure 3. Left ventricle morphometry, blood pressure, and rate pressure product before and after 72-h infusion of isoproterenol or 
saline. A, Left ventricle wet mass and (B) mean left ventricular cardiomyocyte diameter. C, baseline mean systolic blood pressure and 
(D) rate pressure product recorded telemetrically. E, Mean systolic blood pressure and (F) rate pressure product recorded telemetrically 
during infusion of isoproterenol or saline. Black-filled bars, spontaneously hypertensive rat (SHR), saline-treated; stripe-filled bars, SHR, 
isoproterenol-treated; white-filled bars, Cfb-/-, saline-treated; hatch-filled bars, Cfb-/-, isoproterenol-treated. Differences in genotype 
*P<0.05, ***P<0.0005 or treatment †P<0.05, ††P<0.005, †††P<0.0005.
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analysis. Cfb−/− rats exhibited a marked increase in basal and 
maximal respiration and had a 2-fold increased reserve respi-
ratory capacity. Taken together with the reduction in adipocyte 
number, the data suggest that the elevation of mitochondrial 
respiratory capacity may provide an adipose tissue-intrin-
sic mechanism for reduced fat accumulation in Cfb−/− EAT. 
In SAT, increased mass in Cfb−/− rats was associated with 
increased Fasn and reduced Pgc1a expression, consistent 

with the function of Fasn as an insulin-sensitive fatty acid 
synthase, the role of Pgc1a in stimulating fatty acid oxida-
tion, and the known upregulation of FASN in human obesity 
and type 2 diabetes mellitus.24 These changes seemed to over-
ride the increases in Aco1 and Ucp1 expression observed in 
Cfb−/− rats, which would be expected to reduce adipocyte 
mass through increased trichloroacetic acid cycle activity and 
thermogenesis. The redistribution of visceral to subcutaneous 

Figure 4. Gene expression levels in left 
ventricles after 72-h isoproterenol or saline 
treatment. A, Nppa, natriuretic peptide a, (B) 
Nppb, brain natriuretic peptide, (C) Camk2d, 
calcium/calmodulin dependent protein 
kinase II delta Myh6, (D) Myh7, myosin heavy 
polypeptide 7, (E) Actc1, α-cardiac actin, (F) 
Acta1, α-skeletal actin. Black-filled bars, SHR, 
saline-treated; stripe-filled bars, spontaneously 
hypertensive rat (SHR), isoproterenol-treated; 
white-filled bars, Cfb-/-, saline-treated; hatch-
filled bars, Cfb-/-, isoproterenol-treated. 
Differences in genotype *P<0.05, **P<0.005, 
***P<0.0005 or treatment †P<0.05, ††P<0.005, 
†††P<0.0005.
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fat marked changes in gene expression, and adipose respi-
ratory capacity are likely to be the key to improvements in 
whole-body glucose homeostasis and metabolic function in 
Cfb−/− rats. Reduced BAT mass in Cfb−/− rats was associated 
with increased Pgc1a and Slc2a4 and decreased Ucp1 and 
FASN expression. This fat reduction may be consistent with 
increased Pgc1a driving lipolysis although inhibiting fatty 
acid synthesis; however, further experiments in Cfb−/− rats will 
be required to understand the BAT energy-substrate balance 
resulting from Cfb deficiency.

To further investigate altered adipose function in the Cfb−/− 
rat, we quantified Lep and Adipoq transcripts in EAT, SAT, 
and BAT. Although adipose Lep expression was reduced, cir-
culating leptin was comparable in Cfb−/− and SHR. Although 
incompletely explained here, this could be accounted for by dif-
ferences in post-translational processing and release, or periph-
eral metabolism, of leptin. Despite increased Adipoq expression 
in SAT alone, circulating high molecular-weight adiponectin 

was reduced in Cfb−/− rats. Conversely, high molecular-weight 
adiponectin in humans is lower in obese, insulin-resistant com-
pared with lean, insulin-sensitive individuals.25 However, adi-
ponectin deficiency in mice has been shown to have no effect 
on glucose homeostasis on a normal diet.26,27 Further, infusion 
of adiponectin in high-fat fed SHRs only marginally reduced 
insulin levels without affecting energy expenditure or hyperten-
sion.28 Taken together with the observed metabolic improve-
ments, this suggests other mechanisms, besides adiponectin, 
drive insulin sensitization in the Cfb−/− rat.

We also tested the hypothesis that deletion of Cfb in SHR 
would affect the expression of SHR cardiovascular pheno-
types. In this study, we showed that Cfb−/− rats had reduced 
systolic and diastolic blood pressure, reduced LV mass and 
cardiomyocyte diameter, and an abrogated isoproterenol-
induced increase in rate pressure product. These alterations 
represent a marked amelioration in several of the key cardio-
vascular features of MetS manifested in SHR.

Figure 5. Cardiometabolic genome-wide association study (GWAS) hits and cis-eQTLs (quantitative trait loci) located in the human the 
complement factor B (CFB) locus. Eighteen relevant cardiometabolic single-nucleotide polymorphisms (SNPs) located <1 Mb from the 
boundaries of the human CFB gene (upper; red). Twenty-six SNPs were retrieved from the GTEx Portal that were found to be significantly 
associated with CFB expression (P<0.05), blue SNPs are associated with a significant negative effect, whereas red SNPs are associated 
with a significant positive effect. Four SNPs (with 1 overlapping) were determined to be correlated to both CFB expression, as well as 
being GWAS hits for relevant cardiometabolic traits (lower; red/blue). See Table S8 for a list of genes located in the CFB locus. 
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The reduction in blood pressure was associated with 
reductions in renin–angiotensin system components, suggest-
ing that Cfb may have a direct effect, yet unexplained, on this 
system, mediating blood pressure and subsequently LV mass. 
Although Cfb deletion leads to lower blood pressure in SHR, 
our experiments do not distinguish whether Cfb is responsi-
ble for increasing above or maintaining basal blood pressure. 
Further detailed experiments are required to distinguish these 
2 possible mechanisms.

To gain further insight into the molecular changes caused 
by Cfb deficiency in the heart, we investigated the effect of 
Cfb deletion on cardiomyogenic genes (ie, Nppa, Nppb, 
Myh6, Myh7, Acta1, and Camk2d), which are activated in 
response to stress.29 Our study showed that despite reduced 
LV mass, Camk2d expression was significantly increased in 
saline-treated Cfb−/−. CaMKII (calcium/calmodulin-depen-
dent protein kinase type 2) is proposed to regulate inflamma-
tion (Cfb, Tnfa, and Il-6) and cardiomyogenesis in response 
to hypertension-related pressure overload, β-adrenergic ago-
nists, or myocardial infarction-induced cell injury.30 Thus, Cfb 
may contribute to both cardiac inflammation and hypertrophy 
in response to stress, possibly through regulation of cardio-
myogenic gene expression. For example, we showed complete 
or near complete abrogation in Cfb−/− rats of the isoprotere-
nol-stimulated increase in Acta1 and Nppb expression seen in 
SHR. Further, Nppa expression was increased in both saline- 
and isoproterenol-treated Cfb−/−. Therefore, independent of 
blood pressure, the lack of compensatory Acta1 upregulation 
and the favourable Actc1:Acta1 ratio31 indicate that the Cfb−/− 
LV may be partially protected from compensatory cytoskeletal 
changes associated with LV dysfunction. Equally, abrogation 
of Nppb expression in the presence of isoproterenol indicates 
that the Cfb−/− LV is partly protected from stress. Further, 
upregulation of Nppa in Cfb−/− rats may, in part, contribute 
to the observed reduction in cardiomyocyte diameter and LV 
mass. Taken together, in Cfb−/− rats, upregulation of Nppa and 
abrogation of Acta1 expression in the presence of isoproter-
enol may indicate a blood pressure-independent mechanism 
for preserving LV function.

In addition to glucose metabolism and hypertension, we 
assessed the concentration of circulating lipids and Th-1 cyto-
kines and showed reduced cholesterol and triglycerides, as well 
as reduced proinflammatory cytokines in Cfb−/− rats. Some 
of the metabolic and immune parameters that we measured 
here have also been measured in a Cfb−/− mouse, although no 

cardiovascular measurements have been reported. Like the 
Cfb−/− rat, the Cfb−/− mouse lacks AP activity and has reduced 
Tnfα, Il-6, and Ifn-γ.32,33 Although having some immune 
similarities to the Cfb−/− rat, Cfb−/− mice compared with WT 
mice are more glucose intolerant and have higher circulating 
triglycerides.34 The differences between these 2 models could 
be because of several reasons, including genetic background 
affecting metabolism differently, the use of high-fat diet in 
the mouse studies to elicit a phenotype, and the presence of 2 
protein-coding Cfb transcripts in the mouse, whereas rats and 
humans have only one. On a high-fat diet, Ldlr−/−/Cfb−/− mice 
showed protection against atherosclerosis,35 which is distinct 
from the amelioration in metabolic and cardiovascular pheno-
types that we observed here. However, the 2 studies combined 
strongly encourage further investigation of Cfb as a target for 
protection from the development of cardiovascular disease.

Rat Cfb resides in chromosome 20p12, a region previously 
found to be important in the regulation of blood pressure, glu-
cose homeostasis, and adiposity in SHR.18–21 We propose that 
Cfb, at least in SHR, plays a major part in the development of 
key features of MetS that are linked to 20p12. However, given 
that the SHR.1N congenic that covers 20p12 has a reduction 
of 20 mm Hg, other genes in the region may also contribute.19

The location of human CFB and the syntenic region to 
the rat gene is on human 6p21.33.18 We located 18 SNPs with 
genome-wide significant associations to cardiometabolic 
traits ≤1 Mb from CFB. Several GWAS hits in the region were 
associated with type 2 diabetes mellitus and components of 
MetS. Two SNPs, rs13196329 and rs2247056, were correlated 
with visceral fat, triglycerides, and CFB expression. Further, 
1 SNP, rs805303, was significantly positively correlated with 
systolic and diastolic blood pressure, and hypertension, as 
well as with increased CFB expression. These results suggest 
that CFB expression associated with these SNPs may be caus-
ally linked to accumulation of visceral fat, circulating lipids, 
and development of hypertension in humans.

In addition to altering complement activity, Cfb ablation 
reduced proinflammatory cytokines Ifn-γ, Il-6, and Tnfα 
whose elevated levels are associated with hypertension, obe-
sity, and insulin resistance.36,37 Further, chronic low-grade 
inflammation and overactivation of the innate immune sys-
tem are now recognized causes of type 2 diabetes mellitus,4,5 
with clinical trials for therapeutic targets against inflammatory 
pathways for the treatment of diabetes mellitus and cardiovas-
cular disease currently underway.38

Table.  cis-eQTL SNPs Significantly Correlated With CFB Gene Expression and GWAS Hits

SNP identifier
Distance  
From TSS

Nominal  
P Value

P Value 
(FDR)* Slope† Tissue Proxy/GWAS Hit

rs805303 −297084 0.0020 0.0489 0.226 heart left ventricle GWAS hit

rs805301 −295329 0.0020 0.0489 0.226 heart left ventricle proxy to rs805303

rs9264664 −674223 0.0012 0.0263 −0.224 artery aorta proxy to rs2247056

rs2858881
790395 0.0028 0.0408 0.387

adipose 
subcutaneous

proxy to rs13196329

CFB indicates Complement factor b; FDR, false discovery rate; GWAS, genome-wide association study; QTL, quantitative 
trait locus; SNP, single-nucleotide polymorphisms; and TSS, transcription start site.

*P value (FDR), P value after adjustment for false discovery rate.
†Slope of the correlation curve between SNP and CFB expression.
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Compounds that target CFB already exist, and taken together 
with the findings in our study, suggest that CFB has significant 
potential as a novel target for treatment of metabolic disease39,40

This is the first study to report the widespread amelioration 
of metabolic and cardiovascular phenotypes through deletion 
of an alternative complement pathway gene in a model of MetS. 
Cfb deletion improves glucose homeostasis, adipose distribu-
tion and function, lowers blood pressure and reduces cardiac 
hypertrophy, protecting against LV stress. Together with our 
analysis of the human CFB region for cardiometabolic traits, 
we conclude that CFB expression and function may directly or 
indirectly regulate multiple metabolic and cardiovascular pro-
cesses in health and disease in the rat and in humans.

Perspectives
CFB is elevated in human cohorts with type 2 diabetes mellitus 
and cardiovascular disease, although a causal relationship has yet 
to be established. We identified alterations in Cfb expression as a 
possible cause of hypertension and insulin resistance in the SHR. 
Cfb knockout rats have improved glucose homeostasis linked 
to favorable alterations in adipose tissue distribution and func-
tion and reduced blood pressure and LV mass suggesting new 
adipose tissue-intrinsic and blood pressure-independent mecha-
nisms for SHR insulin resistance and cardiac hypertrophy. SNPs 
in human CFB are associated both with hypertension and visceral 
adiposity and with CFB gene expression, suggesting that genetic 
variation in CFB may, in part, explain the genetic associations at 
the human CFB locus. Further studies are required to establish 
whether overexpression of adipose tissue Cfb alone is the prime 
determinant of MetS traits. Clinical trials are presently being 
undertaken to test the therapeutic effects of CFB inhibitors and 
to investigate AP components as causal factors in human diseases 
related to overactivity of the innate immune system. Given the 
findings in this study, CFB may also be a valid therapeutic target 
to treat or prevent progression of human MetS.
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What Is New?
•	Cfb—an innate immune component—is a determinant of adipose  

tissue distribution, glucose homeostasis, blood pressure, and LV mass 
in the SHR.

What Is Relevant?
•	Cfb, directly or indirectly, drives novel adipose tissue-intrinsic and blood 

pressure-independent mechanisms for SHR insulin resistance, hyper-
tension, and cardiac hypertrophy. SNPs associated with cardiometabolic 
traits and CFB gene expression, suggest variation in CFB may, in part, 
underlie these traits in humans.

Summary

Metabolic and cardiovascular components of MetS are improved by 
ablation of the Cfb gene in SHR. At the human CFB locus, 3 SNPs 
are significantly associated with visceral adiposity, hypertension, 
and CFB gene expression.

Novelty and Significance
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Supplemental Methods 

 

Rats 

Cfb
-/-

 rats were generated on an SHR/NCrl background (Charles River, Margate, UK), 

by microinjecting ZFN mRNA (Sigma), targeted to exon 6 of Cfb (target sequence: 

CCCCTCGGGCTCCATGaatatcTACATGGTGCTGGATG), into one-cell stage 

SHR/NCrl embryos that were implanted into pseudopregnant rats. Heterozygous 

progeny, from a founder harboring a 19 bp deletion in Cfb, were intercrossed to 

generate homozygous knockout rats. A search for off-target events was conducted by 

whole genome sequencing and analysed as described previously, confirmed the 19 bp 

deletion 1, 2
. Six additional putative variants, analysed by Sanger Sequencing, were 

determined to be false positives (Table S1). Rats were housed in open cages with free 

access to food and water. All procedures were carried out in accordance with UK 

Home Office regulations. 

 

Serum analysis 

Following an overnight fast, serum was extracted from whole blood exsanguinated 

under terminal isofluorane anaesthesia (n = 6 per group). Serum lipids were analysed 

by the Veterinary Pathology Laboratory, Edinburgh. In-house ELISAs were used to 

determine: serum Alternative complement (AP) activity (Hycult Biotech), leptin and 

total adiponectin (Merck Millipore), and high-molecular-weight (HMW) adiponectin 

and aldosterone (AMS Biotech). Serum Th1 cytokine concentrations were quantified 

using the LEGENDplex Rat Th1 Panel (6-plex) kit (BioLegend) and BD Accuri™ C6 
Flow Cytometer (BD Biosciences). Those cytokines reported undetectable, were 

below the sensitivity of the assay. 

 

Adipocyte morphometry 

Epididymal fat pads were weighed, cut into five equal pieces, and processed for 

paraffin wax embedding (n = 6 rats per group). A random image was taken from one 

4 μm thick H&E stained section per piece at 20x magnification to estimate mean 

adipocyte volume 
3
: a line grid was superimposed on to each image and point sampled 

intercept lengths (PSI) measured between two points on the cell membrane. One 

hundred PSI were measured per pad and adjusted for shrinkage 
4
. Fat pad weight was 

converted to volume according to Farvid et al 
5
, which was then divided by mean 

adipocyte volume to estimate volume-weighted adipocyte number. 

 

Glucose homeostasis 

Oral glucose tolerance (OGTT) (n = 10 per group) and intravenous insulin tolerance 

tests (IVITT) (n = 7 per group) were performed as described 
6, 7

. Glucose clearance 

(KITT) was calculated as described 
8
. 

 

Adipocyte metabolic rate 

Isolated primary rat adipocytes (n = 6 rats per group) in Kreb’s buffer (118 mM NaCl, 

1.2 mM MgSO4, 15 mM NaPO4, 1.265 mM CaCl2, 5.56 mM Glucose, 1% BSA) were 

adhered to Matrigel (Corning) coated Seahorse plates (Agilent), washed with XF-

DMEM (Agilent, supplemented with 1 mM Pyruvate and 10 mM Glucose, pH 7.4), 

and incubated (37°C, without CO2, 15 min). A mitochondrial stress test was 

performed as described previously 
9
 in an XFe24 Seahorse Bioanalyser (Agilent) and 

oxygen consumption rate data calculated according to the manufacturer’s instructions 

(Agilent Technologies LDA UK, Cheshire, UK). 
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Telemetry 

Blood pressure transmitters were implanted, using isofluorane anaesthesia, according 

to manufacturer’s instructions (HD-S10, Data Sciences International). Following 

surgical recovery (>7 days), blood pressure, temperature and activity were recorded 

for 72 h (5 min/h) (n = 8-9 per group), before subcutaneous implantation of osmotic 

pumps, under brief isoflurane anaesthesia, (1003D, Azlet) containing either 

isoproterenol (1.2 mg/kg/h) or saline (n = 4-5 per group), and further data collected 

for 72 h. 

 

Echocardiography 

In vivo ultrasound echocardiography was performed by using a Vevo 770 ultrasound 

biomicroscope (Visualsonics) with a RMV710B 25 MHz center frequency transducer 

in 7 week-old male rats. Briefly, isoflurane anesthetized rats were placed on a 

thermostatically controlled ECG monitoring table and maintained at 37
o
C. Parasternal 

long axis (PLAX) ECG-Gated Kilohertz Visualisation (EKV) B mode and M-mode 

views of the left ventricle (LV) were acquired. LV end-systolic and end-diastolic 

areas were measured by tracing the endocardial border using Vevo Analysis Software 

(Visualsonics) in order to calculate ejection fraction (EF) from the PLAX EKV B 

mode view and fractional shortening from the M-mode view. 

 

Cardiomyocyte diameter 

Left ventricle mean cardiomyocyte diameter was determined as described previously 
10

 using images taken by QImaging Micropublisher 3.3RTV camera (QImaging) 

attached to an Olympus BX51 microscope (Olympus) and measured using the 

STEPanizer program (n = 8 per group). 

 

Gene expression 

RNA was extracted from fat depots (subcutaneous (SAT), epididymal (EAT) and 

brown fat (BAT)) (n = 6 per group) and left ventricle (LV) (n = 4-5 per group) for 

qPCR, as described previously 
8
. Primer sequences are listed in Table S2. Actb was 

used as a reference gene for adipose transcripts and LV transcripts. LV transcripts 

from telemetric studies were normalised to Hprt, due to effects of isoproterenol on 

Actb expression. Ct values were compared using the 2
-ΔΔCt

 method. 

 

In silico analysis of the CFB locus  

Single-nucleotide polymorphisms (SNPs) associated with cardio-metabolic traits 

related to type 2 diabetes and MetS residing ≤1 Mb from human CFB (Table S3) were 

identified by mining the NHGRI GWAS catalog 
11

. Proxy SNPs, based on linkage 

disequilibrium were determined using SNAP 

(https://archive.broadinstitute.org/mpg/snap/ldsearchpw.php) with the 1000 genomes 

Pilot 1 and HapMap (release 21 and 22) databases using default parameters (0.8 r
2
 

threshold, 500nt distance). GWAS and proxy SNP locations (280 in total) were 

converted to hg19 coordinates using dbSNP 
12

 and the UCSC Liftover tool 
13

. 

Associations between SNPs and cis-regulated expression quantitative trait loci (cis-

eQTLs) ≤1 Mb from CFB transcription start site (TSS) were determined from tissue 

data files (adipose subcutaneous, artery tibial, adipose visceral omentum, artery aorta, 

heart atrial appendage, heart left ventricle, pancreas, artery coronary, and liver) for 

SNP-gene association pairs downloaded from the GTex portal 

https://archive.broadinstitute.org/mpg/snap/ldsearchpw.php


 4 

(http://www.gtexportal.org/home/). False discovery rate (FDR) was determined in R 

according to the Benjamini-Hochberg approach (https://www.r-project.org).

http://www.gtexportal.org/home/
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Supplementary Tables 

 

Table S1. Putative ZFN off-target events that were found to be false positives 

Gene name Off-target position Rnor_6.0 
SHR/NCrl 

(Illumina) 
Cfb

-/- 
(Illumina) SHR/NCrl (Sanger) Cfb

-/- 
(Sanger) 

Grb2 1:98046688 GCCC GC/GC G/GC GCCC GCCC 

Abhd17c 1:146289241 C C/C C/G C C 

AABR07051532.1 3:16440449-749 C G/G G/T C C 

AABR07065498.1 6:132175624 A 
ACCCCC/ 

ACCCCC 

ACCCC/ 

ACCCCC 
A A 

AABR07065768.3 6:140407070 T T/C G/C T T 

Ppidl1 9:121457023-68 C C/C C/T C C 
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Table S2. Primer sequences used for quantitative real-time PCR analysis 

Gene Forward Reverse 

Aco1 TCAGATAAAGCTGGACACCGGG CCTACTGGGCCATCTTTCGGAT 

Actb ATGTACCCAGGCATTGCTGAC GAGTACTTGCGCTCAGGAGGA 

Actc1 CAAAGCACGCCTACAGATCCCA GAAGACAGCTCTGGGAGCATCA 

Adipoq CTCCACCCAAGGAAACTTGTGC TTAGGACCAAGAACACCTGCGT 

Agt GCTGGAGCTAAAGGACACACAG AAAGGGGTGGATGTATACGCGG 

Camk2d AGTGAGGCTGATGCCAGTCATT CAGGTCCCTGTGAACTATGCCA 

Cfb AGTAGAGATCAAAGGCGGCTCC TTCGAGTCTGCACAGGGTATGG 

Cfb (ZFN) AGGTTGAGCAGGAAGCTCAG AGGACTCGGACCCAGAGAAT 

Cpt1 CTGAGACAGACTCACACCGCTT GTTTTCCTTCCGTGTGGCTCAG 

Fasn TTGTGGACGGAGGTATCAACCC CCATGCTGTAGCCCAGAAGAGT 

Hprt1 TCAGTCCCAGCGTCGTGATTAG TCGAGCAAGTCTTTCAGTCCTGT 

Lep CAGCAGCTGCAAGGTCCAAGA TAGGACCAAAGCCACAGGAACC 

Myh6 ACACCAACCTGTCCAAGTTCC ATCGTGCATTTTCTGCTTGGCG 

Myh7 CAACCTGTCCAAGTTCCGCAAG ACTCTTCATTCAGGCCCTTGGC 

Nppa ATTTCAAGAACCTGCTAGACCACC GCACCTCAGAGAGGGAGCTAAG 

Nppb ACAATCCACGATGCAGAAGCTG GAAGGCGCTGTCTTGAGACCTA 

Pgc1a TTGACTGGCGTCATTCAGGAGC CCAGGGCAGCACACTCTATGT 

Renin GATCACCATGAAGGGGGTCTCT GATCAACTGCAGGGAGCTGGTA 

Slc2a4 TTTGCACACCACTTCCGAAGGC GGTTCCCCATCTTCAGAGCCGAT 

Ucp1 ACATACTGGCAGATGACGTCCC GCTGGGTACACTTGGGTACTGT 
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Table S3. Trait terms from the NHGRI-EBI GWAS catalog that were used to identify 

SNPs associated with cardiometabolic traits in the CFB locus 

NHGRI-EBI genome-wide association cardio-metabolic trait 

Basal_metabolic_rate 

Blood_pressure                                                                     

Blood_pressure_(age_interaction) 

Blood_pressure_(anthropometric_measures_interaction)                               

Blood_pressure_(smoking_interaction) 

Cardiac_hypertrophy                                                                

Cardiovascular_disease_in_hypertension_(ACE_inhibitor_interaction) 

Cardiovascular_disease_in_hypertension_(calcium_channel_blocker_interaction)       

Cardiovascular_disease_risk_factors 

Cardiovascular_heart_disease_in_diabetics                                          

Cholesterol 

Cholesterol_and_Triglycerides                                                      

Cholesterol,_total 

Coronary_heart_disease                                                             

Coronary_heart_disease_event_reduction_in_response_to_statin_therapy_(interaction) 

Diabetes_related_insulin_traits                                                    

Diastolic_blood_pressure 

Diastolic_blood_pressure_(alcohol_consumption_interaction)                         

Fasting_glucose-related_traits 

Fasting_glucose-related_traits_(interaction_with_BMI)                              

Fasting_insulin_(interaction) 

Fasting_insulin-related_traits                                                     

Fasting_insulin-related_traits_(interaction_with_BMI) 

Fasting_plasma_glucose                                                             

Fasting_plasma_glucose_(childhood) 

Glucose_homeostasis_traits                                                         

Glycemic_traits 

HDL_cholesterol                                                                    

HDL_Cholesterol_-_Triglycerides_(HDLC-TG) 

Hypertension                                                                       

Insulin_resistance/response 

LDL_cholesterol                                                                    

Lipoprotein_(a)_-_cholesterol_levels 

Lipoprotein_(a)_levels                                                             

Metabolic_syndrome 

Metabolic_traits                                                                   

Systolic_blood_pressure 

Systolic_blood_pressure_(alcohol_consumption_interaction)                          

Systolic_blood_pressure_in_sickle_cell_anemia 

Triglycerides                                                                      
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Triglycerides-Blood_Pressure_(TG-BP) 

Two-hour_glucose_challenge                                                         

Type_2_diabetes 

Type_2_diabetes_(dietary_heme_iron_intake_interaction)                             

Type_2_diabetes_(young_onset)_and_obesity 

Type_2_diabetes_and_gout                                                           

Type_2_diabetes_and_other_traits 

Type_2_diabetes_nephropathy                                                        

Visceral_adipose_tissue 

Visceral_adipose_tissue_adjusted_for_BMI                                           

Visceral_adipose_tissue/subcutaneous_adipose_tissue_ratio 

Visceral_fat   
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Table S4. Serum analytes 

Analyte SHR Cfb
-/-

 

Cholesterol (mM) 1.62 ± 0.05 1.26 ± 0.06*** 

Triglyceride (mM) 0.28 ± 0.01 0.24 ± 0.02** 

Adiponectin (total) (ng/mL) 38.3 ± 2.8 43.4 ± 2.6 

Adiponectin (HMW*) (ng/mL) 3.81 ± 0.14 2.36 ± 0.05*** 

Leptin (ng/mL) 0.95 ± 0.08 0.95 ± 0.05 

Aldosterone (ng/mL) 272 ± 14 150 ± 6*** 

IL-2 (pg/mL) undetected undetected 

IL-6 (pg/mL) 108.7 ± 6.4 undetected 

IL-10 (pg/mL) 182.2 ± 24.6 45.9 ± 17.9* 

GM-CSF† (pg/mL) 19.25 ± 4.9 10.5 ± 2.2 

IFN-γ (pg/mL) 18.2 ± 1.1 7.12 ± 0.3*** 

TNFα (pg/mL) 8.05 ± 1.98 undetected 

Results are mean ± SEM; *P < 0.05, **P < 0.005, ***P < 0.0001. 

*HMW, high molecular weight. 
†GM-CSF, granulocyte macrophage colony-stimulating factor. 
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Table S5. Left ventricle echocardiographic measurements at 7 weeks of age 

 Parameter SHR Cfb
-/-

 

LV* Mass; d (mg) 646 ± 29      542 ± 43 

LV (mg/kg) 4500 ± 154    3649 ± 268* 

Endocardial Volume; d† (μL) 251 ± 14      248 ± 10 

Endocardial Volume; s‡ (μL) 85 ± 9        64 ± 4 

Endocardial Area Change (mm
2
) 29.1 ± 1.5     33.6 ± 1.8 

LV wall thickness; d (mm)   1.24 ± 0.05     1.08 ± 0.06 

Heart Rate (beats/min) 324 ± 6 315 ± 7 

Endocardial Stroke Volume (μL) 165 ± 10      183 ± 9 

Ejection fraction (%) 66.2 ± 2.3     73.9 ± 1.7* 

Fractional area change (%) 47.0 ± 1.8  54.8 ± 1.9** 

Fractional shortening (%) 36.1 ± 0.6   43.4 ± 1.0** 

Cardiac output (mL/min) 53.9 ± 3.5    57.6 ± 2.5 

Results are mean ± SEM; *P < 0.05, **P < 0.005, ***P < 0.0001. 
*left ventricle. 
†d, diastole. 
‡s, systole. 



 12 

Table S6. NHGRI-EBI cardio-metabolic GWAS hits located at the CFB locus 

Disease/trait 
Strongest SNP/ 

risk allele 

Chromosome 

position 

Distance from 

Cfb (Mb) 

Type 2 diabetes rs3132524-G 31168937 0.775 

Coronary heart disease rs3869109-G 31216419 0.728 

LDL cholesterol, total cholesterol rs9357121 31272702 0.671 

Triglycerides rs2247056-T 31297713 0.646 

SBP, DBP rs9266359-C 31364962 0.579 

Type 2 diabetes rs2244020-G 31379674 0.564 

Visceral fat adjusted for BMI rs12175489-A 31409810 0.534 

Metabolic syndrome rs3099844-A 31481199 0.463 

SBP, DBP, Hypertension rs805303-G 31648589 0.296 

SBP, DBP, Hypertension rs2021783-C 32077074 0.126 

Triglycerides rs419132-G 32243022 0.292 

Visceral fat rs13196329-C 32357594 0.407 

Coronary heart disease rs9268402-G 32373576 0.423 

Cholesterol, total rs3177928-A 32444658 0.494 

Cholesterol, total rs114067101-G 32490183 0.539 

HDL cholesterol rs116569761 32680379 0.729 

Coronary heart disease rs11752643-T 32701596 0.751 

Type 2 diabetes rs3916765-A 32717773 0.767 
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Table S7. GTex cis-eQTLs associated with CFB expression 

SNP Id P-value 

Effect 

size Tissue 

Chromosome 

position 

(Hg38) 

Distance 

from 

TSS* 

rs115056371 0.000084 0.17 Adipose_Subcutaneous 31238942 -706731 

chr6_32630981_D 0.000051 0.18 Adipose_Subcutaneous 32663204 717531 

rs9274179 0.000054 0.18 Adipose_Subcutaneous 32662687 717014 

rs28746813 0.000065 0.18 Adipose_Subcutaneous 32665453 719780 

chr6_32656068_I 0.000072 0.18 Adipose_Subcutaneous 32688291 742618 

rs28746811 0.000076 0.18 Adipose_Subcutaneous 32665420 719747 

rs28746814 0.000085 0.18 Adipose_Subcutaneous 32665470 719797 

rs116066079 0.0001 0.18 Adipose_Subcutaneous 32712646 766973 

rs114682366 0.0001 0.18 Adipose_Subcutaneous 32712664 766991 

rs28724263 0.000023 0.19 Adipose_Subcutaneous 32664152 718479 

rs114830099 0.000028 0.19 Adipose_Subcutaneous 32742444 796771 

rs114515571 0.000041 0.19 Adipose_Subcutaneous 32713384 767711 

rs114227315 0.000041 0.19 Adipose_Subcutaneous 32712602 766929 

rs9274657 0.0000045 0.2 Adipose_Subcutaneous 32668587 722914 

rs9274659 0.0000045 0.2 Adipose_Subcutaneous 32668608 722935 

chr6_32656067_I 0.000021 0.2 Adipose_Subcutaneous 32688290 742617 

rs9274209 0.000038 0.2 Adipose_Subcutaneous 32663043 717370 

rs28746806 0.000043 0.2 Adipose_Subcutaneous 32665288 719615 

rs28746832 0.000005 0.21 Adipose_Subcutaneous 32666039 720366 

chr6_32632717 0.000049 0.22 Adipose_Subcutaneous 32664940 719267 

rs9274227 0.000059 0.22 Adipose_Subcutaneous 32663365 717692 

rs191863247 0.0000039 0.27 Adipose_Subcutaneous 32487582 541909 
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chr6_32632878_I 0.000042 0.28 Adipose_Subcutaneous 32665101 719428 

chr6_32627913_D 0.000056 0.39 Adipose_Subcutaneous 32660136 714463 

rs60302302 0.0000064 0.41 Adipose_Subcutaneous 32515926 570253 

rs181165562 0.000075 0.41 Adipose_Subcutaneous 32386129 440456 

rs76846904 0.000015 0.78 Adipose_Subcutaneous 32532140 586467 

rs76415507 0.000009 -0.4 Artery_Aorta 32524812 579139 

rs143726520 0.0000044 -0.36 Artery_Aorta 32520080 574407 

rs114624824 0.000013 -0.34 Artery_Aorta 32524743 579070 

rs74655967 0.000013 -0.34 Artery_Aorta 32524691 579018 

rs115623335 0.0000036 -0.33 Artery_Aorta 32564801 619128 

rs76851429 0.000041 -0.33 Artery_Aorta 32524591 578918 

rs116640755 0.00002 -0.32 Artery_Aorta 32564779 619106 

rs80237386 0.000027 -0.32 Artery_Aorta 32524716 579043 

rs75906455 0.00003 -0.32 Artery_Aorta 32524742 579069 

rs77159841 0.000038 -0.32 Artery_Aorta 32524733 579060 

rs72492345 0.000049 -0.32 Artery_Aorta 32564838 619165 

rs146763062 0.000027 -0.31 Artery_Aorta 32523894 578221 

rs115814063 0.000039 -0.31 Artery_Aorta 32524316 578643 

chr6_32551762_D 0.000062 -0.31 Artery_Aorta 32583985 638312 

chr6_32490131_D 0.000065 -0.31 Artery_Aorta 32522354 576681 

rs114553448 0.000083 -0.31 Artery_Aorta 32569362 623689 

rs115918114 0.00005 -0.3 Artery_Aorta 32524524 578851 

rs79949014 0.000086 -0.3 Artery_Aorta 32524609 578936 

rs142399500 0.000059 -0.29 Artery_Aorta 32521691 576018 

rs141142229 0.000082 -0.29 Artery_Aorta 32524028 578355 
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rs114980010 0.0000041 -0.33 Artery_Tibial 31604704 -340969 

rs1048709 0.000049 -0.25 Artery_Tibial 31947158 1485 

rs115804811 0.0000022 -0.81 

Skin_Sun_Exposed_ 

Lower_leg 32570025 624352 

rs74216018 0.0000089 -0.47 

Skin_Sun_Exposed_ 

Lower_leg 32524667 578994 

rs34382076 0.00001 -0.44 

Skin_Sun_Exposed_ 

Lower_leg 32581548 635875 

rs79606458 0.000045 -0.28 

Skin_Sun_Exposed_ 

Lower_leg 32522036 576363 
*TSS, transcription start site 
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Table S8. Genes residing in the 1 MB region upstream/downstream the CFB transcription start site 

Gene stable ID Gene Start (bp) Gene End (bp) Gene name 

ENSG00000233529 30945979 30954862 HCG21 

ENSG00000275906 30961403 30962396 XXbac-BPG118E17.10 

ENSG00000204544 30983718 30989903 MUC21 

ENSG00000261272 31010474 31035402 MUC22 

ENSG00000228789 31053450 31059890 HCG22 

ENSG00000222895 31083010 31083109 RNU6-1133P 

ENSG00000204542 31111223 31112559 C6orf15 

ENSG00000204540 31114750 31140092 PSORS1C1 

ENSG00000204539 31115090 31120446 CDSN 

ENSG00000204538 31137536 31139350 PSORS1C2 

ENSG00000238211 31140727 31140913 POLR2LP1 

ENSG00000204536 31142439 31158238 CCHCR1 

ENSG00000137310 31158542 31167159 TCF19 

ENSG00000204531 31164337 31180731 POU5F1 

ENSG00000204528 31173735 31177899 PSORS1C3 

ENSG00000272501 31195200 31198037 XXbac-BPG299F13.17 

ENSG00000206344 31197760 31203968 HCG27 

ENSG00000271821 31200165 31201918 XXbac-BPG299F13.14 

ENSG00000255726 31222913 31223093 XXbac-BPG299F13.15 

ENSG00000255899 31224342 31225058 XXbac-BPG299F13.16 

ENSG00000204525 31268749 31272130 HLA-C 

ENSG00000234745 31269491 31357188 HLA-B 

ENSG00000214892 31275572 31278754 USP8P1 

ENSG00000227939 31280317 31281519 RPL3P2 

ENSG00000231402 31287510 31288964 WASF5P 

ENSG00000256166 31293908 31301642 XXbac-BPG248L24.13 

ENSG00000229836 31307815 31308549 XXbac-BPG248L24.10 

ENSG00000277402 31355224 31355316 MIR6891 

ENSG00000271581 31356647 31357637 XXbac-BPG248L24.12 



 17 

ENSG00000228432 31366352 31366898 DHFRP2 

ENSG00000201658 31370134 31370240 RNU6-283P 

ENSG00000230994 31377419 31378019 FGFR3P1 

ENSG00000223702 31380411 31380839 ZDHHC20P2 

ENSG00000225851 31382074 31382288 HLA-S 

ENSG00000272221 31394289 31395495 XXbac-BPG181B23.7 

ENSG00000204520 31399784 31415315 MICA 

ENSG00000206337 31400702 31477506 HCP5 

ENSG00000199332 31402152 31402250 Y_RNA 

ENSG00000230174 31441667 31446973 LINC01149 

ENSG00000233902 31462728 31463336 XXbac-BPG181B23.6 

ENSG00000204516 31494881 31511124 MICB 

ENSG00000201680 31496689 31496790 Y_RNA 

ENSG00000256851 31515979 31516211 XXbac-BPG16N22.5 

ENSG00000219797 31519480 31520291 PPIAP9 

ENSG00000225499 31528114 31528693 RPL15P4 

ENSG00000204511 31528717 31530232 MCCD1 

ENSG00000198563 31530219 31542448 DDX39B 

ENSG00000254870 31530219 31546608 ATP6V1G2-DDX39B 

ENSG00000201785 31536374 31536449 SNORD117 

ENSG00000265236 31541101 31541178 SNORD84 

ENSG00000234006 31542304 31543138 DDX39B-AS1 

ENSG00000213760 31544462 31548427 ATP6V1G2 

ENSG00000204498 31546870 31558829 NFKBIL1 

ENSG00000226979 31572054 31574324 LTA 

ENSG00000232810 31575567 31578336 TNF 

ENSG00000227507 31580525 31582522 LTB 

ENSG00000204482 31586124 31588909 LST1 

ENSG00000204475 31588895 31592985 NCR3 

ENSG00000230622 31611083 31611356 UQCRHP1 

ENSG00000204472 31615184 31617021 AIF1 
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ENSG00000204469 31620720 31637771 PRRC2A 

ENSG00000200816 31623079 31623210 SNORA38 

ENSG00000274494 31633787 31633858 MIR6832 

ENSG00000204463 31639028 31652705 BAG6 

ENSG00000204444 31652416 31658210 APOM 

ENSG00000204439 31658298 31660772 C6orf47 

ENSG00000227198 31658329 31660721 C6orf47-AS1 

ENSG00000204438 31661229 31666283 GPANK1 

ENSG00000201207 31663288 31663401 Y_RNA 

ENSG00000204435 31665236 31670343 CSNK2B 

ENSG00000263020 31666102 31673546 XXbac-BPG32J3.22 

ENSG00000240053 31670167 31673776 LY6G5B 

ENSG00000204428 31676684 31684040 LY6G5C 

ENSG00000204427 31686949 31703444 ABHD16A 

ENSG00000204422 31686962 31714072 XXbac-BPG32J3.20 

ENSG00000266776 31701029 31701091 MIR4646 

ENSG00000204424 31706885 31710595 LY6G6F 

ENSG00000250641 31706904 31717918 XXbac-BPG32J3.19 

ENSG00000255552 31711771 31714065 LY6G6E 

ENSG00000244355 31715356 31717804 LY6G6D 

ENSG00000204420 31718594 31726714 MPIG6B 

ENSG00000204421 31718648 31721845 LY6G6C 

ENSG00000213722 31727038 31730617 DDAH2 

ENSG00000213719 31730581 31739763 CLIC1 

ENSG00000204410 31739948 31762834 MSH5 

ENSG00000255152 31740020 31764851 MSH5-SAPCD1 

ENSG00000252743 31756951 31757053 RNU6-850P 

ENSG00000228727 31762799 31764851 SAPCD1 

ENSG00000235663 31764310 31765588 SAPCD1-AS1 

ENSG00000204396 31765590 31777294 VWA7 

ENSG00000204394 31777518 31795953 VARS 
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ENSG00000201555 31778817 31778905 Y_RNA 

ENSG00000204392 31797396 31806984 LSM2 

ENSG00000204390 31809619 31815065 HSPA1L 

ENSG00000204389 31815464 31817946 HSPA1A 

ENSG00000204388 31827735 31830255 HSPA1B 

ENSG00000204387 31834608 31839766 C6orf48 

ENSG00000201823 31835263 31835326 SNORD48 

ENSG00000201754 31837076 31837142 SNORD52 

ENSG00000204386 31857659 31862906 NEU1 

ENSG00000204385 31863192 31879046 SLC44A4 

ENSG00000204371 31879759 31897687 EHMT2 

ENSG00000237080 31883761 31884204 EHMT2-AS1 

ENSG00000166278 31897785 31945672 C2 

ENSG00000204366 31899607 31901992 ZBTB12 

ENSG00000244255 31927698 31952048 XXbac-BPG116M5.17 

ENSG00000281756 31934474 31941724 C2-AS1 

ENSG00000243649 31945650 31952084 CFB 

ENSG00000204356 31952087 31959110 NELFE 

ENSG00000284446 31956839 31956940 MIR1236 

ENSG00000204351 31959080 31969755 SKIV2L 

ENSG00000204348 31969810 31972292 DXO 

ENSG00000204344 31971091 31982821 STK19 

ENSG00000244731 31982024 32002681 C4A 

ENSG00000233627 31999976 32003521 C4A-AS1 

ENSG00000204338 32005636 32008451 CYP21A1P 

ENSG00000248290 32008614 32012472 TNXA 

ENSG00000250535 32013270 32013787 STK19B 

ENSG00000224389 32014762 32035418 C4B 

ENSG00000229776 32032713 32036258 C4B-AS1 

ENSG00000231852 32038265 32041670 CYP21A2 

ENSG00000168477 32041154 32115334 TNXB 
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ENSG00000252512 32078508 32078628 RNA5SP206 

ENSG00000213676 32098176 32128253 ATF6B 

ENSG00000204315 32128707 32130291 FKBPL 

ENSG00000204314 32148359 32154373 PRRT1 

ENSG00000221988 32153441 32163680 PPT2 

ENSG00000258388 32153845 32171978 PPT2-EGFL8 

ENSG00000241404 32164583 32168281 EGFL8 

ENSG00000204310 32168212 32178096 AGPAT1 

ENSG00000284469 32170030 32170116 MIR6721 

ENSG00000204308 32178354 32180793 RNF5 

ENSG00000277264 32179816 32179876 MIR6833 

ENSG00000204305 32180968 32184324 AGER 

ENSG00000273333 32184733 32185882 XXbac-BPG300A18.13 

ENSG00000204304 32184741 32190186 PBX2 

ENSG00000213654 32190766 32195523 GPSM3 

ENSG00000204301 32194843 32224067 NOTCH4 

ENSG00000277427 32255284 32350039 XXbac-BPG154L12.5 

ENSG00000225914 32255711 32265838 XXbac-BPG154L12.4 

ENSG00000204296 32288526 32371912 C6orf10 

ENSG00000237285 32325219 32326178 HNRNPA1P2 

ENSG00000223335 32352877 32352983 RNU6-603P 

ENSG00000228962 32390510 32393686 HCG23 

ENSG00000204290 32393963 32407128 BTNL2 

ENSG00000204287 32439842 32445046 HLA-DRA 

ENSG00000196301 32459821 32473500 HLA-DRB9 

ENSG00000198502 32517343 32530287 HLA-DRB5 

ENSG00000251916 32549940 32550090 RNU1-61P 

ENSG00000229391 32552713 32560022 HLA-DRB6 

ENSG00000196126 32578769 32589848 HLA-DRB1 

ENSG00000196735 32628179 32647062 HLA-DQA1 

ENSG00000179344 32659467 32668383 HLA-DQB1 
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ENSG00000223534 32659880 32660729 HLA-DQB1-AS1 

ENSG00000235040 32706124 32706955 MTCO3P1 

ENSG00000232080 32718005 32719170 XXbac-BPG254F23.7 

ENSG00000226030 32730758 32731695 HLA-DQB3 

ENSG00000237541 32741342 32747215 HLA-DQA2 

ENSG00000263649 32749912 32749979 MIR3135B 

ENSG00000232629 32756098 32763534 HLA-DQB2 

ENSG00000241106 32812763 32817048 HLA-DOB 

ENSG00000250264 32813767 32838822 XXbac-BPG246D15.9 

ENSG00000204267 32821833 32838780 TAP2 

ENSG00000204264 32840717 32844703 PSMB8 

ENSG00000204261 32844086 32846495 PSMB8-AS1 

ENSG00000240065 32844136 32859585 PSMB9 

ENSG00000168394 32845209 32853978 TAP1 

ENSG00000234515 32879171 32879848 PPP1R2P1 

ENSG00000235301 32896416 32896490 HLA-Z 

ENSG00000242574 32934629 32941070 HLA-DMB 
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Figure S1. Generation of a complement factor b knockout rat on an SHR background. (A) 

qPCR analysis of Cfb expression epididymal (Fat), left ventricle (LV) and liver from SHR 

(filled bars) and WKY (striped bars). (B) Serum alternative complement (AP) activity in SHR 

compared to WKY (+, positive control, -, negative control). (C) Graphical representation of 

Cfb detailing unique variants in SHR (red-circled) compared to BN and WKY. (D) Diagram 

of the exon-intron structure of the rat Cfb gene indicating the 19 bp deletion generated by 

zinc-finger nucleases in exon 6. (E) qPCR analysis of Cfb and immunoblot of Cfb protein 

expression in epididymal adipose tissue (Fat), left ventricle (LV) and liver, showing protein 

and transcript ablation in Cfb-/- tissues, SHR (black-filled bars) and Cfb-/- (white-filled bars). 

(F) Serum AP complement activity in Cfb-/- (open bar) compared to SHR (filled bar) (+, 

positive control, -, negative control). (n = 5-6 per group). *P <0.05, **P <0.01, ***P <0.001.
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Figure S2. Oxygen consumption rate (OCR) and CoxIV abundance in isolated adipocytes from 

SHR and Cfb-/- rats. (A) basal respiratory rate, (B) reserve capacity (RC), (C) leak respiration, 

(D) ATP-linked respiration, and (E) ATP efficiency non-respiratory oxygen consumption rate in 

isolated epididymal adipocytes. (F) expression of CoxIV protein abundance in epididymal fat (n 

= 6 per group). *P <0.05.
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Figure S3. Telemetric measurements of (A) mean core body temperature and (B) activity (n 

= 8-9 per group). Cfb-/- (open bars) compared to SHR (filled bars). Significant differences 

between light and dark periods ***P <0.001.
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Figure S4. Baseline cardiovascular measurements. (A) Relative heart wet mass (n = 15 per 

group). (B) Light micrographs of representative H&E stained left ventricle sections (scale 

bar 10 µm). (C) Systolic and (D) diastolic blood pressure hourly plots during 72 h (n = 8-9 

per group). (E) Mean diastolic blood pressure and (G) Heart rate. *P<0.05.
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Figure S5. Gene expression of (H) renal renin and (I) hepatic angiotensinogen (n = 6 per 

group). **P <0.01, ***P <0.001
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Figure. S6. Wet cardiac masses taken from rats treated with isoproterenol and saline for 72 h. 

(A) Heart rate, (B) relative heart and (C) left ventricle wet masses (n = 4-5 per group). Black-

filled bars, SHR, saline-treated; Stripe-filled bars, SHR, isoproterenol-treated; White-filled 

bars, Cfb-/-, saline-treated; Hatch-filled bars, Cfb-/-, isoproterenol-treated. Differences in 

genotype **P <0.01 or treatment †P <0.05, ††P <0.01, †††P <0.001 .
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Figure S7. Myh6 expression levels in left ventricles following 72h isoproterenol or saline 

treatment. Black-­‐‑filled	
  bars,	
  SHR,	
  saline-­‐‑treated;	
  Stripe-­‐‑filled	
  bars,	
  SHR,	
  isoproterenol-­‐‑

treated;	
  White-­‐‑filled	
  bars,	
  Cfb-­‐‑/-­‐‑,	
  saline-­‐‑treated;	
  Hatch-­‐‑filled	
  bars,	
  Cfb-­‐‑/-­‐‑,	
  isoproterenol-­‐‑

treated.
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