211 research outputs found

    Reef fish associations with benthic habitats at a remote protected coral reef ecosystem in the Western Indian Ocean-Aldabra Atoll, Seychelles

    Get PDF
    The aim of the thesis is to develop an understanding of the associations between reef fish and benthic habitats and assess the modifying effects of environmental processes on these relationships at Aldabra, a pristine atoll in the Western Indian Ocean (WIO). Conducting research in pristine, or reference coral reef ecosystem, removes the impact of direct anthropogenic disturbances and provides essential information on natural ecosystem structure and functioning. Three primary hypotheses were tested: 1) Environmental drivers such as depth and exposure to wave energy determine the spatial distribution of benthic habitats; 2) The reef fish assemblage structure is explained by habitat at multiple scales and modified by the effects of environmental drivers such as depth, wave energy and cyclical temporal drivers such as time and tides; 3) The reef fish assemblage at Aldabra represents a pristine reef fish assemblage, comprising high levels of herbivores and predators. The research focussed on the benthic habitat on the seaward reefs between the shoreline and 50 m depth. The first objective was to characterise the benthic habitats on Aldabra Atoll’s seaward reefs and map their spatial distributions using remotely sensed imagery and ground truthing data. The second was to assess the influence of depth and exposure to wave energy on the distribution of benthic habitats. The third was to identify the most suitable standardised method to survey the reef fish assemblage structure on Aldabra’s, and fourth to determine the effect of tide and time of day on the reef fish assemblage. The fifth objective was to establish the association between reef fish assemblage structure and benthic habitats and to test how species-size influenced the scale of habitat at which the associations were most apparent. Four categories of geomorphic reef zones (reef flats (19.2 km2), top of the forereef slope (7.8 km2), deep forereef slope (11.6 km2), and reef platform (14.3 km2)) were manually delineated following the visual outlines of reef features from satellite imagery. The six broad-scale and twelve fine-scale benthic habitats were mapped using a supervised maximum likelihood classification and the spatial coverage of each determined. The broad-scale habitats were 1) Epilithic algal matrix, 2) Hard and soft (coral, 3) Rubble, 4) Macroalgae, 5) Seagrass and 6) Sand. Similarly, twelve fine-scale benthic habitats were characterised and mapped, for example, Hard coral (19 %) including massive and submassive forms with Millepora and Rhytisma. The broad-scale benthic habitat map had an overall producer accuracy of 54 % and fine-scale habitat map 29 %, which was consistent with studies using similar habitat classification methods. The prevailing wave energy, depth and the directional orientation of coral reefs (aspect) significantly influenced the probability of occurrence of each of the broad-scale benthic habitats, and there was a shift in peak probability of occurrence of all habitat categories to a greater depth with an increase in wave energy. The strong relationship of benthic habitats with depth and wave energy suggests that the distributions of benthic habitats are likely to change with sea-level rise and increased intensity and frequency of storms in future. Overall, 338 fish species from 51 families, including 14 species of elasmobranch were recorded using Baited Remote Underwater Video systems (BRUVs) and unbaited Remote Underwater Video systems (RUVS) from 231 samples. Fish were significantly more abundant when observed using BRUVs (119 ± 7) relative to RUVs (92 ± 7), and the assemblage structures were significantly different between the two sampling methods. Abundance and species richness of generalist carnivores and piscivores were significantly greater in BRUVs, while RUVs recorded significantly greater numbers of herbivores and more species of herbivore and corallivore. The results suggest that BRUVs are better suited when studying predatory fish which may not be detected without bait. However, when surveying a taxonomically and functionally diverse assemblage of fishes at a pristine reef, RUVs may provide a more accurate estimate of natural reef fish assemblage structure. Reef fish assemblages observed using RUVs were significantly different between morning-high-tide, midday-low-tide and evening-high-tide for all trophic groups. However, the reef fish assemblage structure observed using BRUVs was insensitive to change in tide and time of day, which may be explained by the attraction effect of bait dampening the effect of tide and time of day. While RUVs appear better to detect more subtle variations in fish assemblage structure, care needs to be taken when designing research programmes that use RUVs, as the sampling design should account for tide and time of day to avoid misinterpreting the cyclical variation, which may confound results. Reef fish assemblages were significantly different among habitats within geomorphic reef zones, broad-scale and fine-scale habitats. Species turnover rates were significantly different for all Actinopterygii size-class categories between the three scales of habitat. No marked differences in species turnover rates among habitats were detected for the majority of Elasmobranch size-class categories. The strong habitat dependency over various spatial scales indicates that effective conservation of Actinopterygii fish at Aldabra, and elsewhere in similar ecosystems requires protection of representative sets of benthic habitats. However, Elasmobranch conservation requires sufficiently large areas as these species utilise multiple habitats, over multiple scales, which are likely to exceed the confines of Aldabra’s reef

    The use of fish species in a marine conservation plan for KwaZulu-Natal

    Get PDF
    This study formed part of a larger provincial marine systematic conservation plan for KwaZulu-Natal (KZN), South Africa, called SeaPLAN. Owing to budget and time constraints, not all ± 1640 fish species that occur in the region were considered. A method to prioritise species was therefore developed to identify those species which were most at most risk of being excluded by a conservation plan based primarily on habitat representation (i.e. SeaPLAN). The method was based on three underlying principles: (i) species with limited conservation options; (ii) threatened species; and (iii) inherently vulnerable species. From these three principles, seven criteria were defined (e.g. endemic or rare species). Sixtyseven species met the qualifying conditions for these criteria and were consequently included in this study (FishPLAN). In order to map the distributions of these 67 fish species, the spatial and temporal accuracy of existing marine fish data for KZN was investigated. Only 17 percent of the data evaluated met the spatial resolution requirements of 1 km2, while temporal resolution was high: >99 percent of the data were collected at daily resolution. A resulting recommendation is that future data collection employ handheld data recording devices (with GPS capability), in order to increase the spatial accuracy of data, minimise human error and improve the efficiency of data flow. Species life cycle envelopes (SLICES) were developed to capture spatial differences in areas occupied during three life-cycle phases (reproductive, juvenile and feeding). Two distribution modelling techniques were used: Maxent, which uses quantitative data, and CHARMS (cartographic habitat association range models), which uses qualitative range data. A combination of statistical and biological criteria was used to determine the most informative and appropriate model for each species. Species distribution models (SDMs) were constructed for three temporal partitions of the data: annual, summer and winter. Patterns of species richness developed from the seasonal models showed seasonal differences in patterns that conformed to known seasonal distributions of fish assemblages: richness was higher in southern KZN during winter, while it was higher in northern KZN during summer. The resulting SDMs were used to develop a conservation plan for fish: conservation targets were set using the minimum recommended baseline of 20 percent of a species’ range, to which biological retention targets (additional proportion of the range) were added, in an attempt to ensure species persistence. The conservation targets were then adjusted using catch per unit effort (CPUE) data to match seasonal abundance of a given species. Within the existing network of marine protected areas (MPAs), none of the species’ targets are met by MPA sanctuary zones (zone As) alone, and all species require greater areas of protection. Three areas, namely offshore of the Tugela River mouth, the reefs offshore of Durban, and Aliwal Shoal, were consistently identified as being important in addition to existing MPAs for conservation of the fish species investigated. The greater efficiency of a seasonal MPA network to protect seasonally varying distributions of biodiversity, suggests that this may be a useful tool to consider in conservation management. The outcome of a conservation plan from this study (FishPLAN) was finally compared with the broader, more inclusive conservation plan, SeaPLAN. This comparison demonstrated how conservation plans based on a single group of species run the risk of identifying areas that are appropriate only for the relevant species, and might fail to conserve biodiversity as a whole

    Reef fish associations with benthic habitats at a remote protected coral reef ecosystem in the Western Indian Ocean-Aldabra Atoll, Seychelles

    Get PDF
    The aim of the thesis is to develop an understanding of the associations between reef fish and benthic habitats and assess the modifying effects of environmental processes on these relationships at Aldabra, a pristine atoll in the Western Indian Ocean (WIO). Conducting research in pristine, or reference coral reef ecosystem, removes the impact of direct anthropogenic disturbances and provides essential information on natural ecosystem structure and functioning. Three primary hypotheses were tested: 1) Environmental drivers such as depth and exposure to wave energy determine the spatial distribution of benthic habitats; 2) The reef fish assemblage structure is explained by habitat at multiple scales and modified by the effects of environmental drivers such as depth, wave energy and cyclical temporal drivers such as time and tides; 3) The reef fish assemblage at Aldabra represents a pristine reef fish assemblage, comprising high levels of herbivores and predators. The research focussed on the benthic habitat on the seaward reefs between the shoreline and 50 m depth. The first objective was to characterise the benthic habitats on Aldabra Atoll’s seaward reefs and map their spatial distributions using remotely sensed imagery and ground truthing data. The second was to assess the influence of depth and exposure to wave energy on the distribution of benthic habitats. The third was to identify the most suitable standardised method to survey the reef fish assemblage structure on Aldabra’s, and fourth to determine the effect of tide and time of day on the reef fish assemblage. The fifth objective was to establish the association between reef fish assemblage structure and benthic habitats and to test how species-size influenced the scale of habitat at which the associations were most apparent. Four categories of geomorphic reef zones (reef flats (19.2 km2), top of the forereef slope (7.8 km2), deep forereef slope (11.6 km2), and reef platform (14.3 km2)) were manually delineated following the visual outlines of reef features from satellite imagery. The six broad-scale and twelve fine-scale benthic habitats were mapped using a supervised maximum likelihood classification and the spatial coverage of each determined. The broad-scale habitats were 1) Epilithic algal matrix, 2) Hard and soft (coral, 3) Rubble, 4) Macroalgae, 5) Seagrass and 6) Sand. Similarly, twelve fine-scale benthic habitats were characterised and mapped, for example, Hard coral (19 %) including massive and submassive forms with Millepora and Rhytisma. The broad-scale benthic habitat map had an overall producer accuracy of 54 % and fine-scale habitat map 29 %, which was consistent with studies using similar habitat classification methods. The prevailing wave energy, depth and the directional orientation of coral reefs (aspect) significantly influenced the probability of occurrence of each of the broad-scale benthic habitats, and there was a shift in peak probability of occurrence of all habitat categories to a greater depth with an increase in wave energy. The strong relationship of benthic habitats with depth and wave energy suggests that the distributions of benthic habitats are likely to change with sea-level rise and increased intensity and frequency of storms in future. Overall, 338 fish species from 51 families, including 14 species of elasmobranch were recorded using Baited Remote Underwater Video systems (BRUVs) and unbaited Remote Underwater Video systems (RUVS) from 231 samples. Fish were significantly more abundant when observed using BRUVs (119 ± 7) relative to RUVs (92 ± 7), and the assemblage structures were significantly different between the two sampling methods. Abundance and species richness of generalist carnivores and piscivores were significantly greater in BRUVs, while RUVs recorded significantly greater numbers of herbivores and more species of herbivore and corallivore. The results suggest that BRUVs are better suited when studying predatory fish which may not be detected without bait. However, when surveying a taxonomically and functionally diverse assemblage of fishes at a pristine reef, RUVs may provide a more accurate estimate of natural reef fish assemblage structure. Reef fish assemblages observed using RUVs were significantly different between morning-high-tide, midday-low-tide and evening-high-tide for all trophic groups. However, the reef fish assemblage structure observed using BRUVs was insensitive to change in tide and time of day, which may be explained by the attraction effect of bait dampening the effect of tide and time of day. While RUVs appear better to detect more subtle variations in fish assemblage structure, care needs to be taken when designing research programmes that use RUVs, as the sampling design should account for tide and time of day to avoid misinterpreting the cyclical variation, which may confound results. Reef fish assemblages were significantly different among habitats within geomorphic reef zones, broad-scale and fine-scale habitats. Species turnover rates were significantly different for all Actinopterygii size-class categories between the three scales of habitat. No marked differences in species turnover rates among habitats were detected for the majority of Elasmobranch size-class categories. The strong habitat dependency over various spatial scales indicates that effective conservation of Actinopterygii fish at Aldabra, and elsewhere in similar ecosystems requires protection of representative sets of benthic habitats. However, Elasmobranch conservation requires sufficiently large areas as these species utilise multiple habitats, over multiple scales, which are likely to exceed the confines of Aldabra’s reef

    Optimizing Jastrow factors for the transcorrelated method

    Full text link
    We investigate the optimization of flexible tailored real-space Jastrow factors for use in the transcorrelated (TC) method in combination with highly accurate quantum chemistry methods such as initiator full configuration interaction quantum Monte Carlo (FCIQMC). Jastrow factors obtained by minimizing the variance of the TC reference energy are found to yield better, more consistent results than those obtained by minimizing the variational energy. We compute all-electron atomization energies for the challenging first-row molecules C2 , CN, N2 , and O2 and find that the TC method yields chemically accurate results using only the cc-pVTZ basis set, roughly matching the accuracy of non-TC calculations with the much larger cc-pV5Z basis set. We also investigate an approximation in which pure three-body excitations are neglected from the TC-FCIQMC dynamics, saving storage and computational cost, and show that it affects relative energies negligibly. Our results demonstrate that the combination of tailored real-space Jastrow factors with the multi-configurational TC-FCIQMC method provides a route to obtaining chemical accuracy using modest basis sets, obviating the need for basis-set extrapolation and composite techniques.Comment: Submitted to J Chem Phy

    Optimizing Jastrow factors for the transcorrelated method

    Get PDF
    We investigate the optimization of flexible tailored real-space Jastrow factors for use in the transcorrelated (TC) method in combination with highly accurate quantum chemistry methods, such as initiator full configuration interaction quantum Monte Carlo (FCIQMC). Jastrow factors obtained by minimizing the variance of the TC reference energy are found to yield better, more consistent results than those obtained by minimizing the variational energy. We compute all-electron atomization energies for the challenging first-row molecules C2, CN, N2, and O2 and find that the TC method yields chemically accurate results using only the cc-pVTZ basis set, roughly matching the accuracy of non-TC calculations with the much larger cc-pV5Z basis set. We also investigate an approximation in which pure three-body excitations are neglected from the TC-FCIQMC dynamics, saving storage and computational costs, and show that it affects relative energies negligibly. Our results demonstrate that the combination of tailored real-space Jastrow factors with the multi-configurational TC-FCIQMC method provides a route to obtaining chemical accuracy using modest basis sets, obviating the need for basis-set extrapolation and composite techniques

    Structural Basis of Competitive Recognition of p53 and MDM2 by HAUSP/USP7: Implications for the Regulation of the p53–MDM2 Pathway

    Get PDF
    Herpesvirus-associated ubiquitin-specific protease (HAUSP, also known as USP7), a deubiquitylating enzyme of the ubiquitin-specific processing protease family, specifically deubiquitylates both p53 and MDM2, hence playing an important yet enigmatic role in the p53–MDM2 pathway. Here we demonstrate that both p53 and MDM2 specifically recognize the N-terminal tumor necrosis factor–receptor associated factor (TRAF)–like domain of HAUSP in a mutually exclusive manner. HAUSP preferentially forms a stable HAUSP–MDM2 complex even in the presence of excess p53. The HAUSP-binding elements were mapped to a peptide fragment in the carboxy-terminus of p53 and to a short-peptide region preceding the acidic domain of MDM2. The crystal structures of the HAUSP TRAF-like domain in complex with p53 and MDM2 peptides, determined at 2.3-Å and 1.7-Å resolutions, respectively, reveal that the MDM2 peptide recognizes the same surface groove in HAUSP as that recognized by p53 but mediates more extensive interactions. Structural comparison led to the identification of a consensus peptide-recognition sequence by HAUSP. These results, together with the structure of a combined substrate-binding-and-deubiquitylation domain of HAUSP, provide important insights into regulation of the p53–MDM2 pathway by HAUSP

    Impacts of coral bleaching on reef fish abundance, biomass and assemblage structure at remote Aldabra Atoll, Seychelles: insights from two survey methods

    Get PDF
    IntroductionCoral bleaching immediately impacts the reef benthos, but effects on fish communities are less well understood because they are often delayed and confounded by anthropogenic interactions.MethodsWe assessed changes in fish abundance, biomass and community composition before and after the 2015/16 coral bleaching event at Aldabra Atoll, Seychelles, where local human impacts are minimal, but reefs suffered 50% bleaching-induced coral mortality. We monitored 12 shallow (2–5 m water depth) and nine deep (15 m water depth) permanent survey sites using two survey methods: indicator surveys recording 84 taxa over six years (pre-: 2014; post-bleaching: 2016–2019, 2021), sizing fish based on six size-class categories, and extended fish surveys recording 198 taxa over two years (pre-: 2015; post-bleaching: 2020) with size estimates to the nearest cm (excluding fish < 8 cm).ResultsDuring indicator surveys, mean fish abundance did not change on deep reefs. However, abundance increased by 77% on shallow reefs between 2014 and 2016, which was mainly driven by increases in herbivores and omnivores, likely as a response to elevated turf algae cover following coral mortality. Overall (and functional group-specific) indicator fish biomass did not differ between 2014 and 2016 and remained at or above pre-bleaching levels throughout 2016–2021. In contrast, extended fish surveys in 2015 and 2020 showed a 55–60% reduction in overall abundance on shallow and deep reefs, and a 69% reduction in biomass on shallow reefs, with decreases in biomass occurring in all functional groups. Biomass on deep reefs did not differ between 2015 and 2020. Multivariate analysis of both data sets revealed immediate and long-lasting differences between pre- and post-bleaching fish community compositions, driven largely by herbivorous, omnivorous and piscivorous taxa.DiscussionResults from the indicator surveys suggest that the bleaching event had limited impact on fish abundance and biomass, while the extended surveys recorded changes in abundance and biomass which would otherwise have gone undetected. Our findings improve understanding of the shift a broad community of fish undergoes following a mass coral bleaching event and highlights the value of survey methods that include the full suite of species to detect ecological responses to environmental drivers

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good
    corecore