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ABSTRACT
We investigate the optimization of flexible tailored real-space Jastrow factors for use in the transcorrelated (TC) method in combination
with highly accurate quantum chemistry methods, such as initiator full configuration interaction quantum Monte Carlo (FCIQMC). Jastrow
factors obtained by minimizing the variance of the TC reference energy are found to yield better, more consistent results than those obtained
by minimizing the variational energy. We compute all-electron atomization energies for the challenging first-row molecules C2, CN, N2, and
O2 and find that the TC method yields chemically accurate results using only the cc-pVTZ basis set, roughly matching the accuracy of non-TC
calculations with the much larger cc-pV5Z basis set. We also investigate an approximation in which pure three-body excitations are neglected
from the TC-FCIQMC dynamics, saving storage and computational costs, and show that it affects relative energies negligibly. Our results
demonstrate that the combination of tailored real-space Jastrow factors with the multi-configurational TC-FCIQMC method provides a route
to obtaining chemical accuracy using modest basis sets, obviating the need for basis-set extrapolation and composite techniques.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0147877

I. INTRODUCTION

The numerical study of the many-body electronic Schrödinger
equation is plagued by a number of difficulties that originate from
the singular nature of the Coulomb potential, which at particle coa-
lescence points induces a non-smooth behavior (cusps) in the wave
function.1,2 This gives rise to slow convergence of quantum chemi-
cal methods with respect to the size of the basis sets used. One cure
for this problem is to introduce explicit dependence in the wave
function on electron–electron and electron–nucleus distances.3 This
allows us to analytically encode the non-smooth behavior into the
wave function ansatz, leaving only a relatively smooth wave func-
tion for further treatment. Within the so-called Jastrow ansatz,4 the
electronic wave function is written as

Ψ = eJΦ, (1)

where J = J(r1, . . . , rNe) is a symmetric correlation factor that con-
tains optimizable parameters and depends on the positions of the
Ne electrons, while Φ is an antisymmetric function, which can be
taken to be a single Slater determinant, such as the Hartree–Fock
(HF) state, or a multi-configurational function, such as a config-
urationinteraction (CI) wave function. With J taking care of the
majority of the non-analytic behavior, Φ can be expected to be
a relatively smooth function, accurately expressible using small
basis sets.

The presence of J complicates the many-body integrals required
to solve the Schrödinger equation, which can usually only be handled
by the real-space variational and diffusion quantum Monte Carlo
(VMC and DMC) methods.5,6 The transcorrelated (TC) method
of Boys and Handy7–9 provides a framework for the treatment of
such an ansatz in second quantization, which requires only up to
three-body integrals to be evaluated but involves a non-Hermitian
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effective Hamiltonian. In the early work on the TC method, the non-
Hermiticity of the formalism was found to be highly problematic and
led to a waning of interest in the whole methodology.

There was a revival of interest in the TC method in the late
1990s with Nooijen and Bartlett10 and Ten-no,11–13 who also suc-
cessfully combined the TC method with quantum chemical meth-
ods, such as Møller–Plesset perturbation theory and the linearized
coupled cluster method. Tsuneyuki, Umezawa, and co-workers
developed a Slater–Jastrow treatment of the TC Hamiltonian using
the VMC method14 and applied transcorrelation to solid-state
systems.15–18

With the development of the R12/F12 class of explicitly cor-
related methods,19–27 the interest in the TC method in quan-
tum chemistry once again declined. A second revival of the TC
method has recently been spurred by the realization that the
non-Hermiticity of the TC Hamiltonian is unproblematic28 for
methods such as full configuration-interaction quantum Monte
Carlo (FCIQMC)29–31 while providing substantial improvements
in basis-set convergence32 and in the compactness of CI expan-
sions, for example for strongly correlated two-dimensional Hub-
bard models.33 Coupled-cluster methods have also been devel-
oped to treat the TC Hamiltonian, both in its full form and via
accurate approximations for the efficient treatment of three-body
interactions.34–37 A consistent finding in these works has been that
transcorrelation improves not only the basis-set convergence, as
expected, but also the effective level of theory of the underlying
correlation method, providing a major motivation to develop this
methodology with the ultimate aim of studying strongly correlated
ab initio systems.

The TC method amounts to a non-unitary transformation of
the Hamiltonian of the system, and methods to solve such equa-
tions are, in general, not guaranteed to converge to the exact total
energy from above as the complete basis set limit is approached. The
choice of Jastrow factor proves to be critical in the TC method since a
poor choice can lead to highly non-variational TC energies and poor
error cancellation in energy differences. In this paper, we present a
method for the optimization of Jastrow factors catering to the TC
approach, which we demonstrate in combination with the FCIQMC
method.

TC-FCIQMC is a stochastic eigensolver for the TC Hamilto-
nian and allows for large CI solutions to be obtained for its eigenvec-
tors. This methodology has been used in the past to study first-row
atoms32 using Boys–Handy-type Jastrow factors38 pre-optimized for
use in the VMC method,39 the binding curve of the beryllium dimer
using a Boys–Handy Jastrow with an exponential kernel optimized
with VMC variance minimization,40 and ultra-cold atomic systems
with contact interactions.41,42 With the present method, new highly
flexible Jastrow factors tailored to each system can be obtained for
large molecules, allowing for the methodology to be extended, both
within the context of TC-FCIQMC and in other approaches, such
as TC density matrix renormalization group,43,44 TC selected-CI
approaches,45 and TC coupled-cluster theory,34,35 or for reducing
the resources required in a quantum computing setting.46,47 In our
tests, we found the atomization energies of various challenging first-
row molecules to be chemically accurate using the moderately sized
standard cc-pVTZ basis set.48

The rest of this paper is structured as follows: In Sec. II, we
give an overview of the broader theoretical framework used in our

calculations. The details of our proposed optimization methodology
are given in Sec. III along with data for various first-row atoms and
molecules to support our choices. In Sec. IV, we analyze the accu-
racy of the TC method in calculations of the atomization energies
of these molecules, which we compare with their non-TC counter-
parts, and we present our conclusions in Sec. V. Hartree atomic
units (h = ∣e∣ = me = 4πϵ0 = 1) are used throughout unless stated
otherwise.

II. METHODOLOGICAL FRAMEWORK
Substituting the Jastrow ansatz of Eq. (1) into the Schrödinger

equation, ĤΨ = EΨ, we obtain the similarity-transformed
Schrödinger equation,

ĤTCΦ = EΦ, (2)

where the transcorrelated Hamiltonian is

ĤTC = e−JĤeJ (3)

and Φ is the right-eigenvector of ĤTC. We approach solving the
similarity-transformed Schrödinger equation in two stages: first, we
obtain a suitable J using VMC-based optimization, and then, we
obtain Φ as a CI wave function expanded in a standard quantum
chemical basis set using the TC-FCIQMC method.

The TC-FCIQMC method is based on the imaginary-time
Schrödinger equation with the TC Hamiltonian,

−
∂Φ
∂τ
= ĤTCΦ, (4)

whose long-τ solution is the ground-state wave function that satisfies
Eq. (2). As in the non-TC FCIQMC algorithm,29 Φ is expressed as a
general linear combination of Slater determinants,

∣Φ⟩ =∑
I

cI ∣DI⟩, (5)

where the cI coefficients are sampled by walkers in the FCIQMC sim-
ulation. Once the ground state has been reached, the total energy can
be evaluated by projection onto the HF determinant,

Eproj =
⟨DHF∣ĤTC∣Φ⟩
⟨DHF∣Φ⟩

, (6)

which is averaged over time steps at finite walker numbers to obtain
a statistically meaningful result.

As has been shown by Luo and Alavi,28 the non-Hermitian
nature of ĤTC does not hamper the convergence of the FCIQMC
simulation, and the tools developed for that method apply to ĤTC
as they do to Ĥ; this includes the initiator approximation,30 which
we use in all of the FCIQMC calculations reported in the present
work. Furthermore, Dobrautz et al.33 showed for the strongly corre-
lated 2D Hubbard model that ĤTC has a significantly more compact
ground-state right eigenvector than Ĥ does, implying a reduction
in the initiator error, faster convergence with walker number, and
improved size consistency of the results.

The TC Hamiltonian can be exactly evaluated using the
Baker–Campbell–Hausdorff expansion, which for Jastrow factors
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dependent only on electronic positions truncates exactly at second
order,

ĤTC = e−JĤeJ
= Ĥ + [Ĥ, J] +

1
2
[[Ĥ, J], J]. (7)

For a Jastrow factor containing up to two electron contributions,

J =∑
i< j

u(ri, r j), (8)

the explicit form of ĤTC is

ĤTC = Ĥ −∑
i
(

1
2
∇

2
i J + (∇iJ) ⋅ ∇i +

1
2
(∇iJ)2

)

= Ĥ −∑
i< j

K̂(ri, r j) − ∑
i< j<k

L̂(ri, r j , rk), (9)

where the additional two- and three-body terms are

K̂(ri, r j) =
1
2
[∇

2
i u(ri, r j) +∇

2
ju(ri, r j)

+ ∣∇iu(ri, r j)∣
2
+ ∣∇ ju(r j , ri)∣

2
]

+∇iu(ri, r j) ⋅ ∇i +∇ ju(ri, r j) ⋅ ∇ j ,

L̂(ri, r j , rk) = ∇iu(ri, r j) ⋅ ∇iu(ri, rk)

+∇ ju(r j , ri) ⋅ ∇ ju(r j , rk)

+∇ku(rk, ri) ⋅ ∇ku(rk, r j). (10)

Using this first-quantized Hamiltonian, we can construct a second-
quantized Hamiltonian for a given set of orthonormal spatial
orbitals {ϕ1, . . . , ϕnorb}, with corresponding fermionic spin- 1

2 cre-
ation (annihilation) operators a†

pσ (apσ),

ĤTC =∑
pqσ

hp
qa†

pσaqσ +
1
2∑pqrs

(Vpq
rs − Kpq

rs )∑
στ

a†
pσa†

qτasτarσ

−
1
6 ∑pqrstu

Lpqr
stu∑

στλ
a†

pσa†
qτa†

rλauλatτasσ , (11)

where hp
q = −

1
2 ⟨ϕp∣∇

2
∣ϕq⟩ and Vpq

rs = ⟨ϕpϕq∣r−1
12 ∣ϕrϕs⟩ are the

one- and two-body terms of the original Hamiltonian, and
Kpq

rs = ⟨ϕpϕq∣K̂∣ϕrϕs⟩ and Lpqr
stu = ⟨ϕpϕqϕr ∣L̂∣ϕsϕtϕu⟩ are the corre-

sponding terms arising from the similarity transformation.32 Note
that the three-body operator L̂ is Hermitian, and for real orbitals,
the Lpqr

stu tensor has 48-fold symmetry, a useful property to reduce
the storage requirement for these integrals.

By construction, Jastrow factors can be used to impose local
Kato cusp conditions1 based on the relative spin of electron pairs,
but they are ill-suited to describing more rigorous electronic-state
dependent cusp conditions.2 However, in the present work, we use
spin-independent Jastrow factors for simplicity, which we constrain
to obey the opposite-spin electron–electron cusp condition since it
is physically more important than the parallel-spin cusp condition.
The use of spin-dependent Jastrow factors would require replacing
the spatial-orbital indices above with spin-orbital indices, resulting
in an order of magnitude more three-body integrals to be com-
puted and stored. Notwithstanding this increase in memory require-
ments, spin-dependent Jastrow factors may offer other advantages,
such as faster basis set convergence,24 and will be investigated in
future work.

III. OPTIMIZATION METHODOLOGY
In this section, we present our methodological choices for

the optimization of Jastrow factors to be used in TC methods.
To illustrate the effect of these choices, we compute the ground-
state energies of the all-electron C, N, and O atoms and the C2,
CN, N2, and O2 molecules at their equilibrium geometries,49–51

listed in Table I, with non-TC and TC-FCIQMC calculations using
HF orbitals (restricted open-shell HF orbitals in the case of open-
shell systems) expanded in the standard cc-pVxZ family of basis
sets.48 The quality of energy differences is then assessed using
the atomization energy of the molecules. In order to be able to
determine whether the methodology is capable of delivering chem-
ically accurate relative energies, i.e., incurring an error of less than
1 kcal/mol = 1.6 mHa, we aim to keep each of the different errors
well below this threshold; we comment on the magnitude of the
expected error from each different source in the subsections that fol-
low. We expect a total bias in our resulting relative energies of less
than 0.5 mHa.

For all of our calculations, we generate our orbitals and integra-
tion grids using PYSCF,52 optimize Jastrow factors using the CASINO
continuum QMC package,5 compute TC matrix elements using the
TCHINT library developed by the authors,53 and perform FCIQMC
and TC-FCIQMC calculations with the NECI FCIQMC package.31

We report FCIQMC energies obtained by projection onto the HF
determinant, as per Eq. (6).

In the result of this section, we will discuss the effect of modi-
fying each part of this calculation pipeline on the final TC-FCIQMC
energies; the aspects not being discussed are assumed to operate as
per our final recommendations unless otherwise stated, e.g., when
we discuss the use of variance or energy minimization, we use inte-
gration grids of lgrid = 2, while when we discuss grid density, we
use variance-minimized Jastrow factors. In particular, note that the
reported FCIQMC energies have been extrapolated to the full CI
(FCI) limit as described in Sec. III D 1, unless explicitly stated
otherwise.

A. Jastrow factor
In continuum quantum Monte Carlo calculations, the Jastrow

factor for a molecule consisting of Nn nuclei and Ne electrons
is usually constructed as the sum of isotropic electron–electron,
electron–nucleus, and electron–electron–nucleus terms,54

J =
Ne

∑
i< j

u(ri j) +
Ne

∑
i

Nn

∑
I

χ(riI) +
Ne

∑
i< j

Nn

∑
I

f (ri j , riI , r jI). (12)

TABLE I. Electronic ground states and equilibrium bond lengths used for the
molecules considered in this work, following Ref. 49.

System State req (Å)

C2
1Σ+g 1.2425

CN 2Σ+ 1.1718
N2

1Σ+g 1.0977
O2

3Σ−g 1.2075
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As in Ref. 55, we express each of these terms as a natural power
expansion in the relevant inter-particle distances,

u(ri j) = t(ri j , Lu)∑
k

akrk
i j ,

χ(riI) = t(riI , Lχ)∑
k

bkrk
iI ,

f (ri j , ri, r j) = t(riI , L f )t(r jI , L f )∑
k,l,m

cklmrk
i jr

l
iIr

m
jI ,

(13)

where {ak}, {bk}, and {cklm} are linear parameters, Lu, Lχ , and L f

are cutoff lengths, t(r, L) = (1 − r/L)3Θ(r − L) is a cutoff function,
and Θ(r − L) is the Heaviside step function.

In essence, the VMC and DMC methods sample real-space
electronic configurations {R} following an appropriate distribution
based on an analytic trial wave function ΨT(R) and produce a vari-
ational estimate of the total energy, which is an average of the local
energy EL(R) = Ψ−1

T (R)Ĥ(R)ΨT(R), at the sampled configurations.
Both the electron–electron and electron–nucleus Kato cusp condi-
tions1 are of crucial importance in suppressing extreme outliers in
the local energy samples, making it possible to obtain meaningful
wave-function parameter sets from VMC-based optimization. It is
standard practice to apply the electron–electron cusp condition on
the u term of the Jastrow factor, while the electron–nucleus cusp
condition is enforced by modifying the l = 0 component, ϕ(r), of
cuspless molecular orbitals near nuclei so that they exhibit a cusp.56

This has been found to be a better approach than applying the
electron–nucleus cusp condition via the parameters in the χ term
of the Jastrow factor.5,55,56

However, in TC-FCIQMC, it is preferable to use unmod-
ified molecular orbitals obtained from standard basis sets. It
would be possible to optimize the Jastrow factor parameters in
VMC in the presence of cusp-corrected orbitals and use them in
TC-FCIQMC with a cusp-uncorrected orbital basis, but the Jastrow
factor would then be sub-optimal by construction in the latter calcu-
lation. Instead, we recast the cusp-correction scheme of Ref. 56 as an
electron–nucleus Jastrow factor term Λ, to be added to (rather than
replacing) the χ term in Eq. (12).

We construct our cusp-correcting Jastrow factor term as

Λ(r) = [ln ϕ̃(r) − ln ϕ(r)]Θ(r − rc), (14)

where, using the notation of Ref. 56, rc is the cutoff radius, ϕ(r) is
the l = 0 component of the target orbital at the desired nucleus, and
ϕ̃(r) is its cusp-corrected counterpart,

ϕ̃(r) = e∑
4
l=0 λlrl

+ C, r < rc. (15)

Here, {λl} are parameters determining the shape of the corrected
orbital and parameter C is only set to a non-zero value in the
presence of nodes of ϕ(r) near the nucleus.

Applying continuity and differentiability conditions (see Eq. 14
of Ref. 56) leaves λ0 and rc as the only free parameters in Eqs. (14)
and (15). Reference 56 describes an approach to obtaining reason-
able values for these parameters, which we use as initial values to
be refined by the subsequent VMC optimization procedure. In prac-
tice, we evaluate ϕ(r) in Λ(r) by spline interpolation of tabulated
data. Figure 1 illustrates the effect of using a Λ term in practice.

FIG. 1. Wave function value and local energy as a function of the x coordinate of
an electron in a carbon atom as it crosses the nucleus at x = 0, both without and
with a cusp-correcting Λ Jastrow factor term applied to a HF wave function using
the cc-pVDZ basis.

For reference, in our calculations, we optimize a total of 44 Jas-
trow factor parameters for the atoms and homonuclear dimers and
80 parameters for the CN dimer; we keep the Lu, Lχ , and L f cutoff
lengths fixed at sensible values for simplicity.

B. Jastrow factor optimization
The VMC method not only is capable of evaluating the

variational energy associated with a trial wave function ΨT,

EVMC =
⟨ΨT∣Ĥ∣ΨT⟩

⟨ΨT∣ΨT⟩
, (16)

but also provides a variational framework in which any parameters
α present in this trial wave function can be optimized; note that, in
practice, ∣ΨT⟩ = e J

∣DHF⟩, and α are the optimizable parameters in
J in this work. Wave function optimization is usually carried out
using a correlated-sampling approach in which a set of nopt elec-
tronic real-space configurations {Ri}

nopt
i=1 distributed according to the

initial wave function squared ∣ΨT(R; α0)∣
2 is generated, and then, a

target function is minimized by varying α at fixed {Ri}. One such
target function is the “variance of the VMC energy,”57,58

σ2
VMC =

⟨ΨT∣(Ĥ − EVMC)
2
∣ΨT⟩

⟨ΨT∣ΨT⟩
, (17)

which reaches its lower bound of zero when the trial wave function
is an eigenstate of the Hamiltonian. In practice, minimizing σ2

VMC
yields variational energies affected by large random fluctuations, as
demonstrated below. In continuum QMC methods, modifications
have been devised to circumvent this problem, such as weight lim-
iting, unweighted variance minimization, or the minimization of
other measures of spread, such as the median absolute deviation
from the median energy.5 The computational cost of optimizing Jas-
trow factors within VMC scales as a small power of system size,
typically estimated to be O(N3

e ).
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1. Minimizing the variance of the reference energy
In the context of the TC method, the reference energy,

Eref = ⟨DHF∣e−JĤeJ
∣DHF⟩, (18)

is of particular significance since it represents the starting point of
the calculation, e.g., the energy at τ = 0 of a TC-FCIQMC calculation
or the zeroth-order contribution to the TC coupled cluster energy.
We refer to its associated variance,

σ2
ref = ⟨DHF∣e−J

∣Ĥ − Eref∣
2eJ
∣DHF⟩, (19)

as the “variance of the reference energy,” which can be easily evalu-
ated for a finite VMC sample of size nopt as the sample variance of
the Slater–Jastrow energy over the Hartree–Fock distribution,

S2
ref =

1
nopt − 1

nopt

∑
n=1
∣
Ĥ (Rn)ΨSJ(Rn)

ΨSJ(Rn)
− Ē ref∣

2

, (20)

which tends to σ2
ref as nopt →∞, where ΨSJ = e JDHF is the

Slater–Jastrow wave function, {Rn}
nopt
n=1 are electronic configurations

distributed according to D2
HF, and the VMC estimate of the reference

energy is

Ēref =
1

nopt

nopt

∑
n=1

Ĥ(Rn)ΨSJ(Rn)

ΨSJ(Rn)
. (21)

It should be noted that the variance of the reference energy has been
used as a target function for the optimization of Jastrow factors in
earlier work on the TC method, e.g., in Refs. 9 and 14, albeit in
somewhat different theoretical frameworks.

To understand the physical significance of the variance of
the reference energy, note that Eq. (19) can be written in second
quantized form as

σ2
ref = ∑

I≠HF
∣⟨DI ∣Ĥ TC∣DHF⟩∣

2, (22)

where I runs over a complete basis set. Minimizing σ2
ref amounts to

minimizing the coupling of the HF determinant with the remainder
of the space, which in the TC-FCIQMC method reduces the spawn-
ing rate from the HF determinant to its connected excited-state
determinants, increasing the amplitude of the HF determinant in
the resulting Φ. In other words, if the Slater–Jastrow wave function
were an exact eigenstate of Ĥ, a TC-FCIQMC simulation starting
from the HF determinant would immediately converge to the strictly
single-determinant solution. Although this ideal scenario cannot
be achieved in practice, it nevertheless illustrates the benefits of
obtaining a relatively single-reference CI solution by minimizing
the variance of the reference energy. We expect that this increased
single-reference character will benefit other approaches as well, such
as transcorrelated coupled-cluster methods.

We, therefore, investigate the performance of minimizing σ2
ref

as an alternative to minimizing σ2
VMC tailored to the TC method. In

Fig. 2, we compare the VMC energy and variance obtained by both
variance minimization methods, along with energy-minimized59–61

results for reference, for the systems considered in this work using
nopt = 105 VMC configurations. Minimizing the variance of the

FIG. 2. Variance of the VMC energy (top) and VMC energy (bottom) of the systems
considered in this work using the cc-pVTZ basis and Jastrow factors obtained by
minimizing the variance of the VMC energy (red squares), the variance of the
reference energy (blue circles), or the VMC energy (green diamonds) in each of
ten independent optimization runs with nopt = 105 VMC configurations. To ease
comparisons, variances have been rescaled and energies shifted by their aver-
age values from minimizing the variance of the VMC energy (i.e., the red squares
average to a variance of 1 and an energy of 0 in the plot). The subpar ability of
standard variance minimization to yield consistent VMC energies is evident in the
bottom panel.

VMC energy produces lower average values of σ2
VMC, as one would

expect, but also erratic VMC energies with very large standard devi-
ations (up to ∼50 mHa in our tests). Minimizing the variance of the
reference energy, on the other hand, produces values of σ2

VMC, which
are only slightly higher on average than those obtained from mini-
mizing the variance of the VMC energy (1%–5% in our tests) while
producing more stable VMC energies with much smaller standard
deviations (up to ∼3 mHa in our tests). We, therefore, do not use
“regular” variance minimization since it introduces large stochastic
noise, making it unsuitable for optimizing Jastrow factors, and from
this point on we use the term “variance minimization” to refer to the
minimization of the variance of the reference energy.

2. Using an adequate sample size
In continuum QMC calculations, Jastrow factors are usually

optimized using relatively few VMC configurations, with nopt typ-
ically in the tens of thousands. However, it has been noted that
substantially larger values of nopt in the hundreds of thousands are
needed to converge expectation values other than the VMC energy
with respect to the wave function parameters.62

The level of convergence of any specific expectation value at a
specific value of nopt can be easily assessed by performing multiple
optimization runs with different random seeds and evaluating the
standard deviation of the results. In practice, we find that we can use
the uncertainty on the VMC estimate of the reference energy Ēref
as a proxy for the standard deviation on the TC-FCIQMC energy.
This is a reasonable replacement because (i) the standard deviation
of the TC-FCIQMC energy is not larger than the standard deviation
of the reference energy, as shown in Fig. 3 (it is usually significantly
smaller thanks to the ability of TC-FCIQMC to compensate for the
presence of a bias in Eref via the correlation energy), and (ii) the
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FIG. 3. TC-FCIQMC energy of the C2 molecule obtained using nw = 106 walkers
with the cc-pVDZ basis as a function of the reference energy Eref for multiple inde-
pendent Jastrow factor parameter sets obtained by variance minimization using
three different VMC sample sizes. The horizontal spread is about 1.8 times larger
than the vertical spread, in line with the expectation that the standard deviation of
the TC-FCIQMC energy is smaller than that of the reference energy.

standard deviation of the reference energy is not larger than the sta-
tistical uncertainty on the VMC estimate of the reference energy Ēref
obtained with nopt configurations (it is usually significantly smaller
due to the use of correlated sampling in the optimization procedure).

FIG. 4. Total energy of the C, N, and O atoms as a function of the reciprocal
of the number of molecular orbitals in the cc-pVxZ basis set. The non-variational
behavior of up to about 5 mHa is evident for the energy-minimized Jastrow factors,
for which convergence to the exact energy as a function of basis-set size is rather
slow. The shaded areas represent ±1 kcal/mol around the exact non-relativistic
total energy from Ref. 50. The points in the top panel are annotated with the basis
set cardinal number x.

We have verified that these inequalities hold for all the systems
studied in this work.

For the atoms and molecules considered in the present work,
we find that nopt = 2 × 107 yields TC-FCIQMC energies with stan-
dard deviations of less than 0.1 mHa. While this value of nopt
is three orders of magnitude greater than typical values used in
“regular” VMC calculations, the optimization stage typically takes
tens of core-hours, representing an insignificant part of the total
computational expense of TC-FCIQMC runs.

3. Energy minimization
The obvious alternative to variance minimization is minimiz-

ing the VMC energy itself,59–61 which, as demonstrated in Fig. 2,
results in lower VMC energies but higher VMC variances. Energy
minimization yields wave functions, that minimize the statistical
fluctuations of the local energy in DMC calculations,63 and is typi-
cally the optimization method of choice in the context of continuum
QMC methods, but for other purposes, it is unclear whether the

FIG. 5. Atomization energy of the C2, CN, N2, and O2 molecules as a function of
the reciprocal of the number of molecular orbitals using the cc-pVxZ family of basis
sets and Jastrow factors obtained by variance minimization and energy minimiza-
tion. The FCI limit of the atomization energies for energy-minimized Jastrow factors
is estimated from 106-walker results assuming that the initiator error is identical to
that using variance-minimized Jastrow factors at the same population. The shaded
areas represent ±1 kcal/mol around the theoretical estimate of the non-relativistic
atomization energy of Ref. 49; the distinct estimate of Ref. 50 is also shown for C2.
The points in the top panel are annotated with the basis set cardinal number x.
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resulting wave functions provide a better description of the system
than those produced by variance minimization.

In Fig. 4, we compare the convergence with basis-set size of the
TC-FCIQMC total energies of the C, N, and O atoms using energy-
and variance-minimized Jastrow factors. Variance minimization
appears to produce wave functions that converge quickly and largely
variationally to the basis set limit, while energy-minimized wave
functions tend to yield non-variational TC-FCIQMC energies that
converge very slowly to the basis set limit.

In Fig. 5, we plot the atomization energies of the C2, CN, N2,
and O2 molecules as a function of reciprocal basis-set size, again
demonstrating that variance-minimized Jastrow factors exhibit
favorable convergence properties. Taking into account the evidence
depicted in Figs. 4 and 5, we use variance minimization to optimize
our Jastrow factors for subsequent use with the TC method.

C. Matrix element evaluation
Once the parameters in the Jastrow factor have been obtained,

we proceed to compute the TC contributions to the two- and
three-body terms of the Hamiltonian, Kab

i j and Labc
ijk , respec-

tively, by numerical integration on a grid. For this task, we use
Treutler–Ahlrichs integration grids,64,65 which are atom-centered
grids constructed as the combination of a radial grid running up to
the Bragg radius and a Lebedev angular grid. This type of integration
grid is commonly used in density functional theory calculations for
which grids are usually “pruned” by reducing the number of angular
grid points near the atoms since typical integrands are spherically
symmetric around them, but this is not the case for our integrands,
so we use “unpruned” grids.

We obtain the integration grids using PYSCF,52 which provides
an integer parameter, lgrid, controlling overall grid density. We test
for grid errors by evaluating TC-FCIQMC energies at lgrid = 0–5
and defining the integration error as the difference of each of these

FIG. 6. Absolute integration error in the total energy of the C, N, and O atoms as a
function of 1/ngrid using different basis sets in the cc-pVxZ family. The gray areas
correspond to integration errors of less than 1 and 0.1 mHa. The points in the top
panel are annotated with the value of PYSCF’s grid density parameter lgrid. Notice
the logarithmic scale on both axes.

results with the value obtained by linear extrapolation of the energies
at lgrid = 2–5 to the 1/ngrid → 0 limit.

First, we investigate whether using basis sets of higher cardinal
numbers requires finer grid densities to handle the sharper features
in the corresponding orbitals. In Fig. 6, we plot the absolute integra-
tion error in the total energy of the C, N, and O atoms as a function
of 1/ngrid using the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets. If
larger basis sets incurred a larger integration error, one would expect
the cc-pVQZ results to consistently exhibit larger integration errors
in Fig. 6, but, instead, we find that the choice of basis set has little
to no effect on the integration error, indicating that the grid density
need not be adjusted when the basis set changes.

We now focus on the convergence of the integration error with
grid point density in total energies and energy differences. In Fig. 7,
we plot the absolute integration error in the total energies of the
molecules, in those of the atoms they contain, and in the corre-
sponding atomization energies using the cc-pVDZ basis. We find

FIG. 7. Absolute integration error in the energy as a function of the reciprocal of
the number of grid points used for the evaluation of the TC integrals. Results are
shown for the C2, CN, N2, and O2 molecules at 105 walkers using the cc-pVDZ
basis set, along with the absolute integration error in the sum of the total energies
of the atoms conforming each molecule at walker number convergence and the
absolute integration error in the atomization energy of the molecule obtained as the
difference between both total energies. The gray areas correspond to integration
errors of less than 1 and 0.1 mHa. The points in the top panel are annotated with
the value of PYSCF’s grid density parameter lgrid. Notice the logarithmic scale on
both axes. These results demonstrate that lgrid = 2 is sufficient to achieve sub-mHa
accuracy in total energies and sub-0.1-mHa accuracy in relative energies.
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substantial integration-error cancellation in energy differences, with
the atomization energy for all four molecules reaching 0.1 mHa for
the lgrid = 2 grid, which is a 60-point radial grid combined with a
302-point angular grid totaling 18 120 points per atom, which we,
therefore, use throughout this work. The total energies incur inte-
gration errors of less than 1 mHa for all systems considered using
lgrid = 2.

D. TC-FCIQMC calculations
1. Convergence with the number of walkers

The initiator approximation30 is a tool to prevent uncontrolled
walker growth in FCIQMC calculations, allowing to stabilize the
walker population around an arbitrary target value nw. This approxi-
mation incurs a bias with respect to the FCI limit, which goes to zero
as nw →∞. Typically, the target population is increased until the
FCIQMC energy appears to converge to the target precision. We find
this approach to work remarkably well for the atoms considered in
this work, for which we use nw = 5 × 106 and 5 × 105 in our non-TC
and TC-FCIQMC calculations, respectively, but for the molecules,

FIG. 8. Extrapolation to the FCI limit of (non-TC) SHCI energies with respect to
the second-order PT correction E2 (left) and of FCIQMC energies with respect
to n−1/3

w (right) for the CN molecule. The grayed-out points are not used in the
FCIQMC extrapolations. The translucent areas represent the uncertainty in the
values of the fit at each point caused by the statistical uncertainty in the individual
energies.

we find the level of convergence up to nw = 108 to be unsatisfactory
for our purposes.

For the semi-stochastic heat-bath CI (SHCI) method, it has
been shown that one can obtain accurate estimates of total ener-
gies in the FCI limit by linear extrapolation of SHCI energies to the
limit in which the second-order perturbation-theory (PT) correction
E2 is zero.66,67 In order to obtain benchmark energies to compare
FCIQMC results against, we perform SHCI calculations using the
DICE code68,69 for the molecules considered in this work with varia-
tional spaces of sizes such that ∣E2∣ is not much larger than about 10
mHa;66,67 we only exceed this threshold for the cc-pV5Z calculations
due to memory constraints.

We then perform non-TC FCIQMC calculations using between
106 and 2 × 108 walkers, and we empirically find that extrapolating
the FCIQMC energy linearly in n−1/3

w to n−1/3
w → 0 yields results in

excellent agreement with the FCI limits from SHCI. We demonstrate
this for the CN molecule in Fig. 8; the results for the other molecules
are similarly accurate, with FCI limits obtained from FCIQMC
differing by 0.4 mHa or less from their SHCI counterparts through-
out. Note that in these extrapolations we do not include results at
nw < 107 walkers, which we deem to lie outside of the asymptotic
regime.

The theoretical foundation and validity of this extrapolation
technique will be studied in depth in future work. Here, we limit
ourselves to empirically verifying that it yields accurate FCI limits
for the systems considered, and we make the sole assumption that
the technique continues to produce equally accurate results for these
molecules when the TC Hamiltonian is used. We expect the extrap-
olation of TC-FCIQMC energies to require smaller values of nw than
in the non-TC case due to the increased compactness of the CI wave
function with the TC Hamiltonian.

The more compact the CI wave function is the easier it is, for
FCIQMC to sample the wave function accurately, and the smaller
the initiator error becomes at a fixed population. The TC method
has been shown to make CI wave functions more compact for the
two-dimensional Hubbard model.33 Let {cI} be the L2-normalized
coefficients of the CI wave function such that∑I c2

I = 1. The quantity

ξ =
c(TC)

HF − c(non−TC)
HF

1 − c(non−TC)
HF

(23)

is then a measure of the enhancement in the compactness of the wave
function, going from 0 for no enhancement to 1 if the TC wave func-
tion becomes exactly single-determinantal. From the data in Ref. 33,
the TC method yields a maximum ξ = 0.64 for the 18-site two-
dimensional Hubbard model. We find that the values of ξ for atomic
and molecular systems are not dissimilar from this; see Table II.

Having established the more compact nature of the CI wave
function with the TC Hamiltonian, we deem it appropriate to run the

TABLE II. Enhancement of the compactness of the CI wave function, ξ in Eq. (23),
between our non-TC and TC FCIQMC calculations.

C N O C2 CN N2 O2

cc-pVDZ 0.46 0.63 0.71 0.14 0.23 0.38 0.53
cc-pVTZ 0.45 0.61 0.69 0.15 0.24 0.40 0.55
cc-pVQZ 0.44 0.60 0.69 0.15 0.24 0.41 0.57
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FIG. 9. Estimated initiator error in the TC-FCIQMC energies as a function of n−1/3
w

for the C2, CN, N2, and O2 molecules with the cc-pVDZ, cc-pVTZ, and cc-pVQZ
basis sets. The translucent areas represent the uncertainty in the values of the fit
at each point propagated from the statistical uncertainty in the individual energies.

TC-FCIQMC calculations using between 106 and 107 walkers for the
cc-pVDZ and cc-pVTZ bases and between 106 and 2 × 107 walkers
with the cc-pVQZ basis. In Fig. 9, we plot the resulting TC-FCIQMC
energy relative to its corresponding FCI limit, i.e., the initiator error,
as a function of n−1/3

w for each of the molecules and basis sets consid-
ered. As anticipated, the initiator error is, to a good approximation,
proportional to n−1/3

w , and we expect the extrapolated FCI limits to
incur errors no larger than 0.4 mHa as in the non-TC case.

2. Neglecting three-body excitations
Sampling in FCIQMC calculations involves spawning walkers

from occupied determinants onto determinants connected to them
by the Hamiltonian. The L̂ matrix not only contributes to two-
body excitations via elements of the form Libc

ijk but also connects
determinants, which differ by a pure three-body excitation via Labc

ijk ,
which represents a huge increase in the connectivity of the Hilbert
space with respect to the non-TC problem. However, the matrix ele-
ments Labc

ijk are usually very small in magnitude, so neglecting pure
three-body excitations is a valid approximation to consider.70

This approximation effectively implies that Labc
ijk can be regarded

as zero when all indices are distinct, except when three or more

TABLE III. L̂ matrix storage reduction factor from neglecting pure three-body excita-
tions, computed as the number of non-zero matrix elements in the full L̂ matrix divided
by the number of non-zero matrix elements with repeated indices or three or more
indices corresponding to orbitals occupied in the HF determinant.

C N O C2 CN N2 O2

cc-pVDZ 1.23 1.17 1.17 1.87 1.78 1.78 1.58
cc-pVTZ 2.04 2.02 1.93 3.72 3.66 3.66 3.46
cc-pVQZ 3.31 3.44 3.13 6.60 6.54 6.57 6.41

indices correspond to spatial orbitals, which are occupied in the HF
determinant, since these matrix elements are required during the
evaluation of the projected energy. Therefore, neglecting pure three-
body excitations reduces the amount of storage needed to hold L̂
from O(n6

orb) to O(n5
orb) +O(N

3
e n3

orb); we report the specific reduc-
tion factors obtained for the molecules considered in this work in
Table III.

Two-body excitations are, in practice, more expensive to
attempt than triple excitations, so neglecting the latter actually
increases the cost per step of the calculation. However, neglecting
pure three-body excitations allows the TC-FCIQMC time step to
be larger, resulting in reduced serial correlation in the statistics,
which enables reaching the target accuracy in fewer steps, and one
can generally expect a net cost reduction from this approximation.
We report the specific reduction factors found for the molecules
considered in this work in Table IV.

In Table V, we show the error in the atomization energy of
the molecules incurred by neglecting pure three-body excitations.
We find that this approximation results in errors of the order of
∼0.3 mHa at the cc-pVTZ level, which is a relatively small bias
considering the substantial storage and cost benefits of the approx-
imation. Note that we do not use this approximation in the main
results presented in Sec. IV.

TABLE IV. Reduction factor in the walltime required to advance one unit of imag-
inary time at fixed population from neglecting pure three-body excitations in the
TC-FCIQMC calculation.

C N O C2 CN N2 O2

cc-pVDZ 0.9 1.0 1.1 1.7 1.2 1.5 1.6
cc-pVTZ 1.0 1.0 0.8 2.4 1.0 1.8 2.0
cc-pVQZ 1.5 1.5 1.0 3.1 0.9 1.9 2.3

TABLE V. Error in the atomization energy of the molecules considered in this work
incurred by neglecting pure three-body excitations from the FCIQMC dynamics, in
mHa.

C2 CN N2 O2

cc-pVDZ −0.62(2) −0.46(0) −0.56(2) −0.55(2)
cc-pVTZ −0.36(5) −0.30(2) −0.32(5) −0.20(3)
cc-pVQZ −0.45(6) −0.21(2) −0.32(7) −0.27(5)

J. Chem. Phys. 158, 224105 (2023); doi: 10.1063/5.0147877 158, 224105-9

© Author(s) 2023

 04 July 2023 12:30:16

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE VI. Total energies in Ha obtained for the atoms and molecules considered in this work, along with benchmark non-relativistic results. The statistical uncertainties arising
from Monte Carlo sampling are smaller than 0.0001 Ha in all cases.

C N O C2 CN N2 O2

Non-TC

cc-pVDZ −37.7619 −54.4801 −74.9117 −75.7320 −92.4970 −109.2809 −149.9915
cc-pVTZ −37.7900 −54.5252 −74.9853 −75.8094 −92.5954 −109.4014 −150.1554
cc-pVQZ −37.8126 −54.5535 −75.0236 −75.8578 −92.6517 −109.4653 −150.2362
cc-pV5Z −37.8199 −54.5627 −75.0369 −75.8752 −92.6717 −109.4881 −150.2655
cc-pV6Z −37.8263 −54.5697 −75.0447

TC

cc-pVDZ −37.8293 −54.5622 −75.0226 −75.8844 −92.6671 −109.4727 −150.2216
cc-pVTZ −37.8427 −54.5842 −75.0572 −75.9197 −92.7152 −109.5312 −150.3078
cc-pVQZ −37.8459 −54.5896 −75.0665 −75.9272 −92.7247 −109.5428 −150.3244
cc-pV5Z −37.8457 −54.5898 −75.0678

Reference 49 −75.9240 −92.7232 −109.5425 −150.3273
Reference 50 −37.8450 −54.5893 −75.0674 −75.9265 −109.5427 −150.3274
Reference 51 −37.8450 −54.5893 −75.0674 −92.7229 −109.5425 −150.3275

IV. RESULTS AND DISCUSSION
We now analyze the accuracy of the TC method with tailored

Jastrow factors by comparing the convergence of the results as a
function of basis set size with non-TC results and with benchmark
complete basis-set limit (CBS) values from Refs. 49–51.

In Table VI, we list the total energies that we obtain for each
system and basis set. We find the TC total energies to be remarkably
accurate already at the cc-pVQZ the basis-set level, differing by less
than 2 mHa per atom from benchmark CBS values, while the non-
TC total energies still miss the benchmarks by 25–30 mHa per atom
with the cc-pV5Z basis set and 20 mHa per atom at the cc-pV6Z
level. The TC total energies exhibit slight non-variational conver-
gence, with the atomic energies reaching values 0.5 mHa below the
benchmark before increasing again toward it for larger basis-set
sizes. While non-variationality is not a desirable feature in a method,
the amount by which the TC results dip below the basis-set limit is
sufficiently tiny for this issue to be entirely ignored in practice.

From a chemical perspective, relative energies are more impor-
tant than total energies. The atomization energies of the C2, CN, N2,
and O2 molecules obtained from the total energies in Table VI are

TABLE VII. Atomization energies in mHa obtained for the molecules considered in
this work, along with benchmark non-relativistic results. The statistical uncertainties
arising from Monte Carlo sampling are smaller than 0.1 mHa in all cases.

C2 CN N2 O2

Non-TC

cc-pVDZ 208.2 255.0 320.7 168.0
cc-pVTZ 229.4 280.1 351.0 184.9
cc-pVQZ 232.6 285.6 358.4 189.0
cc-pV5Z 235.5 289.2 362.6 191.7

TC
cc-pVDZ 225.9 275.6 348.4 176.4
cc-pVTZ 234.3 288.2 362.7 193.4
cc-pVQZ 235.5 289.3 363.6 191.4

Reference 49 234.0 288.9 363.9 192.5
Reference 50 236.5 364.1 192.6
Reference 51 288.6 363.9 192.7

given in Table VII and plotted in Fig. 10. Again, we find that the TC
results exhibit much faster convergence with basis-set size than their
non-TC counterparts, with TC atomization energies being chemi-
cally accurate with respect to the CBS benchmarks already at the

FIG. 10. Atomization energy of the C2, CN, N2, and O2 molecules obtained with
FCIQMC and TC-FCIQMC as a function of the reciprocal of the number of molec-
ular orbitals using the cc-pVxZ family of basis sets. The points in the top panel are
annotated with the basis set cardinal number x. The shaded areas represent ±1
kcal/mol around the theoretical estimate of the non-relativistic atomization energy
of Ref. 49; the distinct estimate of Ref. 50 is also shown for C2.
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cc-pVTZ basis-set level, matching the accuracy of non-TC atomiza-
tion energies obtained using the cc-pV5Z basis set. The TC method,
therefore, provides an advantage of about two cardinal numbers for
the computation of relative energies.

The application of the TC method to quantum chemical meth-
ods, in general, could be presumed to be problematic because any
theoretical guarantee of cancellation of errors in energy differences
disappears with the introduction of separately optimized Jastrow
factors for each system. However, the fact that in our results the rel-
ative energy converges at smaller basis-set sizes than the total energy
implies that substantial error cancellation is at play in practice. We
take this as evidence that the TC method with tailored Jastrow fac-
tors does not fully suppress advantageous error cancellation from
the underlying methodology.

It is important to note that neural-network based trial wave
functions proposed in recent years for use with VMC and DMC,71,72

while promising, do not achieve chemical accuracy reliably. For
example, an atomization energy of N2 of 361.2(2) mHa is obtained
from the results provided by Ref. 71, which is 2.7(2)mHa away from
the benchmark; the slight difference in the bond length used for that
calculation only accounts for 0.1 mHa of the energy difference. By
contrast, our TC-FCIQMC atomization energy obtained with the
cc-pVTZ basis is only 1.2 mHa away from the benchmark.

V. CONCLUSIONS
We present a method to optimize flexible Jastrow factors of a

form commonly used in continuum quantum Monte Carlo meth-
ods for application in the TC method, which we have tested within
TC-FCIQMC. Minimizing the variance of the reference energy is
shown to be an especially good fit for the TC method since it maxi-
mizes the single-reference character of the CI wave function, and we
have demonstrated how this method outperforms standard energy
minimization in this context. Various approximate aspects of the
calculations have been considered, and care has been taken to ensure
that we can produce relative energies within significantly less than
1 mHa of their FCI limit.

Our results show that the TC method with tailored Jastrow fac-
tors delivers remarkably accurate total energies and gives relative
energies with a cc-pVTZ basis set, which rivals the accuracy of non-
TC relative energies with the much larger cc-pV5Z basis set. We
expect that future work in this topic, which will likely include tech-
nical enhancements, efficient approximations for dealing with the
three-body integrals, deterministic optimization methods, the use of
polyatomic and spin-dependent Jastrow factor terms, and method-
ological adaptations for strongly correlated systems, will enable
further reductions in the basis-set sizes required to perform accurate
quantum chemistry calculations with the TC method.
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