188 research outputs found

    Improved Network Performance via Antagonism: From Synthetic Rescues to Multi-drug Combinations

    Get PDF
    Recent research shows that a faulty or sub-optimally operating metabolic network can often be rescued by the targeted removal of enzyme-coding genes--the exact opposite of what traditional gene therapy would suggest. Predictions go as far as to assert that certain gene knockouts can restore the growth of otherwise nonviable gene-deficient cells. Many questions follow from this discovery: What are the underlying mechanisms? How generalizable is this effect? What are the potential applications? Here, I will approach these questions from the perspective of compensatory perturbations on networks. Relations will be drawn between such synthetic rescues and naturally occurring cascades of reaction inactivation, as well as their analogues in physical and other biological networks. I will specially discuss how rescue interactions can lead to the rational design of antagonistic drug combinations that select against resistance and how they can illuminate medical research on cancer, antibiotics, and metabolic diseases.Comment: Online Open "Problems and Paradigms" articl

    Evaluating pathway enumeration algorithms in metabolic engineering case studies

    Get PDF
    The design of cell factories for the production of compounds involves the search for suitable heterologous pathways. Different strategies have been proposed to infer such pathways, but most are optimization approaches with specific objective functions, not suited to enumerate multiple pathways. In this work, we analyze two pathway enumeration algorithms based on graph representations: the Solution Structure Generation and the Find Path algorithms. Both are capable of enumerating exhaustively multiple pathways using network topology. We study their capabilities and limitations when designing novel heterologous pathways, by applying these methods on two case studies of synthetic metabolic engineering related to the production of butanol and vanillin

    Co-evolution of strain design methods based on flux balance and elementary mode analysis

    Get PDF
    More than a decade ago, the first genome-scale metabolic models for two of the most relevant microbes for biotechnology applications, Escherichia coli and Saccaromyces cerevisiae, were published. Shortly after followed the publication of OptKnock, the first strain design method using bilevel optimization to couple cellular growth with the production of a target product. This initiated the development of a family of strain design methods based on the concept of flux balance analysis. Another family of strain design methods, based on the concept of elementary mode analysis, has also been growing. Although the computation of elementary modes is hindered by computational complexity, recent breakthroughs have allowed applying elementary mode analysis at the genome scale. Here we review and compare strain design methods and look back at the last ten years of in silico strain design with constraint-based models. We highlight some features of the different approaches and discuss the utilization of these methods in successful in vivo metabolic engineering applications.Novo Nordisk UK Research Foundation(NORTE-07-0124-FEDER-000028

    Genome-scale modeling of yeast: chronology, applications and critical perspectives

    Get PDF
    Over the last 15 years, several genome-scale metabolic models (GSMMs) were developed for different yeast species, aiding both the elucidation of new biological processes and the shift toward a bio-based economy, through the design of in silico inspired cell factories. Here, an historical perspective of the GSMMs built over time for several yeast species is presented and the main inheritance patterns among the metabolic reconstructions are highlighted. We additionally provide a critical perspective on the overall genome-scale modeling procedure, underlining incomplete model validation and evaluation approaches and the quest for the integration of regulatory and kinetic information into yeast GSMMs. A summary of experimentally validated model-based metabolic engineering applications of yeast species is further emphasized, while the main challenges and future perspectives for the field are finally addressedThis work was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of a Ph.D. grant (PD/BD/52336/2013), of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01–0145FEDER-006684) and also in the context of the EU-funded initiative ERA-NET for Industrial Biotechnology (ERA-IB-2/0003/2013), in addition to the BioTecNorte operation (NORTE-01–0145FEDER-000004) funded by European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks

    Get PDF
    International audienceIncreasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from heterogeneous data, and to suggest relevant reactions that explain the metabolic capacity of a biological system

    Stoichiometric representation of geneproteinreaction associations leverages constraint-based analysis from reaction to gene-level phenotype prediction

    Get PDF
    Genome-scale metabolic reconstructions are currently available for hundreds of organisms. Constraint-based modeling enables the analysis of the phenotypic landscape of these organisms, predicting the response to genetic and environmental perturbations. However, since constraint-based models can only describe the metabolic phenotype at the reaction level, understanding the mechanistic link between genotype and phenotype is still hampered by the complexity of gene-protein-reaction associations. We implement a model transformation that enables constraint-based methods to be applied at the gene level by explicitly accounting for the individual fluxes of enzymes (and subunits) encoded by each gene. We show how this can be applied to different kinds of constraint-based analysis: flux distribution prediction, gene essentiality analysis, random flux sampling, elementary mode analysis, transcriptomics data integration, and rational strain design. In each case we demonstrate how this approach can lead to improved phenotype predictions and a deeper understanding of the genotype-to-phenotype link. In particular, we show that a large fraction of reaction-based designs obtained by current strain design methods are not actually feasible, and show how our approach allows using the same methods to obtain feasible gene-based designs. We also show, by extensive comparison with experimental 13C-flux data, how simple reformulations of different simulation methods with gene-wise objective functions result in improved prediction accuracy. The model transformation proposed in this work enables existing constraint-based methods to be used at the gene level without modification. This automatically leverages phenotype analysis from reaction to gene level, improving the biological insight that can be obtained from genome-scale models.DM was supported by the Portuguese Foundationfor Science and Technologythrough a post-doc fellowship (ref: SFRH/BPD/111519/ 2015). This study was supported by the PortugueseFoundationfor Science and Technology (FCT) under the scope of the strategic fundingof UID/BIO/04469/2013 unitand COMPETE2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145FEDER-000004) fundedby EuropeanRegional Development Fund under the scope of Norte2020Programa Operacional Regional do Norte. This project has received fundingfrom the European Union’s Horizon 2020 research and innovation programme under grant agreementNo 686070. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model

    Get PDF
    Motivation: The availability of modern sequencing techniques has led to a rapid increase in the amount of reconstructed metabolic networks. Using these models as a platform for the analysis of high throughput transcriptomic, proteomic and metabolomic data can provide valuable insight into conditional changes in the metabolic activity of an organism. While transcriptomics and proteomics provide important insights into the hierarchical regulation of metabolic flux, metabolomics shed light on the actual enzyme activity through metabolic regulation and mass action effects. Here we introduce a new method, termed integrative omics-metabolic analysis (IOMA) that quantitatively integrates proteomic and metabolomic data with genome-scale metabolic models, to more accurately predict metabolic flux distributions. The method is formulated as a quadratic programming (QP) problem that seeks a steady-state flux distribution in which flux through reactions with measured proteomic and metabolomic data, is as consistent as possible with kinetically derived flux estimations

    Computationally efficient flux variability analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flux variability analysis is often used to determine robustness of metabolic models in various simulation conditions. However, its use has been somehow limited by the long computation time compared to other constraint-based modeling methods.</p> <p>Results</p> <p>We present an open source implementation of flux variability analysis called fastFVA. This efficient implementation makes large-scale flux variability analysis feasible and tractable allowing more complex biological questions regarding network flexibility and robustness to be addressed.</p> <p>Conclusions</p> <p>Networks involving thousands of biochemical reactions can be analyzed within seconds, greatly expanding the utility of flux variability analysis in systems biology.</p
    corecore