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a b s t r a c t

More than a decade ago, the first genome-scale metabolic models for two of the most relevant microbes
for biotechnology applications, Escherichia coli and Saccaromyces cerevisiae, were published. Shortly after
followed the publication of OptKnock, the first strain design method using bilevel optimization to couple
cellular growth with the production of a target product. This initiated the development of a family of
strain design methods based on the concept of flux balance analysis. Another family of strain design
methods, based on the concept of elementary mode analysis, has also been growing. Although the
computation of elementary modes is hindered by computational complexity, recent breakthroughs have
allowed applying elementary mode analysis at the genome scale. Here we review and compare strain
design methods and look back at the last 10 years of in silico strain design with constraint-based models.
We highlight some features of the different approaches and discuss the utilization of these methods in
successful in vivo metabolic engineering applications.
& 2015 The Authors. Published by Elsevier B.V. International Metabolic Engineering Society. This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Computational modeling has emerged as a fundamental tool for
unraveling the complexity of biological processes. There are currently
many different mathematical formalisms that can be used to model
biochemical reaction networks (Machado et al., 2011). Among these
formalisms, the constraint-based modeling approach has become
widely adopted for large-scale modeling of metabolism (Bordbar
et al., 2014). Constraint-based models have been used for a multitude

of applications from guiding biological discovery to the improvement
of industrial bioprocesses (McCloskey et al., 2013).

Constraint-based models can be used to simulate the cellular
phenotype at steady-state using different methods. The most
common approach, flux balance analysis (FBA), is a linear pro-
gramming formulation that relies on the maximization of a
cellular objective, such as growth or ATP generation, to determine
the steady-state flux distribution through a metabolic network
(Orth et al., 2010). Other methods, typically used for simulation of
mutant strains, are based on principles of minimization of meta-
bolic and regulatory adjustments (MOMA, ROOM) (Segrè et al.,
2002; Shlomi et al., 2005). These kinds of methods are usually
classified as biased, since they rely on the assumption of some
evolutionary optimization principle to determine a biologically
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meaningful and physicochemically valid steady-state flux
distribution.

There are also unbiased approaches to analyze feasible flux
distributions in large-scale metabolic networks, including Monte
Carlo sampling and metabolic pathway analysis (Lewis et al.,
2012). Elementary mode analysis (EMA) is one of the most popular
approaches for metabolic pathway analysis. It provides an
unbiased description of the metabolic solution space in terms of
minimal sets of reactions that operate in steady-state (Schuster
and Hilgetag, 1994). These so-called elementary (flux) modes
(EMs) are the basis for several methods to analyze the properties
of metabolic networks, including robustness and fragility, as well
as to calculate the theoretical yields of all metabolic routes (Trinh
et al., 2009).

Both biased and unbiased methods have been used for strain
design since the first genome-scale metabolic models of two
industrially relevant microbes, Escherichia coli and Saccaromyces

cerevisiae, were published in the early 2000s (Edwards and
Palsson, 2000; Förster et al., 2003). From a metabolic engineering
perspective, such models can be used for computer-aided design
of optimal genetic and culture condition manipulation strategies
to improve the production of industrially relevant compounds.
However, given the size of metabolic networks, the exhaustive
analysis of multiple simultaneous genetic manipulations becomes
computationally infeasible. In order to address this challenge, a
variety of methodological solutions have been proposed (Fig. 1).

2. Constraint-based methods

The first systematic optimization-based method for strain
design was the OptKnock approach introduced by Burgard et al.
(2003). OptKnock is a bilevel optimization approach that deter-
mines reaction deletion strategies to couple the production of a

Fig. 1. Chronological perspective of the evolution of strain design methods using constraint-based analysis and elementary mode analysis (EMA). Connections represent
common features between methods, not necessarily a direct extension of the previous method. The shake flask symbol represents experimental applications of the
respective methods.
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desired compound with cellular growth (Burgard et al., 2003). In
OptKnock, the outer optimization layer maximizes the product
yield, while the inner layer optimizes for the cellular growth.
Using duality theory, this bilevel optimization problem can be
reformulated as a single mixed integer linear programming (MILP)
problem. Growth-coupled designs represent mutant strains that
are forced to carry flux through the target pathway as a require-
ment to achieve optimal growth rates. When such strains are
subject to adaptive evolution they gradually evolve towards the
optimal phenotype (Fong et al., 2005). Growth-coupled designs
can be visualized by projecting the flux solution space onto the
growth and production axes, forming the so-called production
envelope (Fig. 2). Two different kinds of growth-coupled designs
can be distinguished, which will herein be referred to as partial
and full growth-coupling. In the first case, the strain is only forced
to produce the target product at optimal growth rates (Fig. 2b),
whereas in the latter case the strain is unable to grow without
product formation (Fig. 2c). One limitation of OptKnock is the
degeneracy in the solution of the inner problem, which can
sometimes result in overly optimistic predictions and lead to
strain designs that are not effectively growth-coupled (Fig. 2a).

The introduction of OptKnock has laid the foundation for a
diversity of bilevel methods for rational strain design that have
been improving over the years. One of such extensions, Robust-
Knock, uses a max–min strategy to account for the degeneracy in
FBA solutions, leading to strain designs that are effectively growth-
coupled (Tepper and Shlomi, 2010). An alternative, simpler to
implement, approach is to apply objective tilting in the OptKnock
formulation (Feist et al., 2010). ReacKnock is a reformulation of
OptKnock that differs in the transformation applied to convert the

bilevel problem to a single level MILP. A comparison of the two
methods shows that higher product yields and faster computa-
tions can be obtained with ReacKnock (Xu et al., 2013b). The
BiMOMA and MOMAKnock approaches replace the simulation
layer in OptKnock with MOMA (Segrè et al., 2002), making it
possible to find designs that do not need to couple cellular growth
to metabolite production (Kim et al., 2011; Ren et al., 2013).

Although MILP formulations can be used to find a globally
optimal solution, their computational cost can, in the worst case,
increase exponentially with the number of reaction deletions. A
common approach to deal with complex optimization problems is
to use heuristic optimization strategies that do not guarantee
finding globally optimal solutions, but often find sufficiently good
solutions with a reasonable computational cost. Patil and co-
workers implemented OptGene, an optimization method based
on genetic algorithms, that allows accounting for larger numbers
of deletions without an increase in computational cost (Patil et al.,
2005). This formulation was later extended to also support
simulated annealing as an optimization method (Rocha et al.,
2008). Besides increased efficiency for finding reasonably good
strain design strategies, these approaches are also more flexible,
allowing the implementation of non-linear objective functions.
Heuristic optimization methods also allow the utilization of
different simulation strategies for the inner problem, such as
MOMA and ROOM (Segrè et al., 2002; Shlomi et al., 2005) without
the need to significantly change the overall optimization approach.

Other methods using nature-inspired metaheuristics to solve
strain design optimization problems include CiED, based on
evolutionary algorithms (Fowler et al., 2009), BAFBA, implement-
ing a bees algorithm (Choon et al., 2012), and DBFBA, combining

Fig. 2. Production envelopes for anaerobic succinate production from glucose based on the E. coli core model (Orth et al., 2009) for a maximum glucose uptake rate of
10 mmol/gDW/h (a–c) and the respective EM yield distribution for each solution space (d–f): (a) wild-type strain (light gray) vs. triple-deletion mutant (ACKr, ATPS4r, FUM)
resulting in a design without growth-coupling (purple); (b) wild-type strain vs. triple-deletion mutant (ACALD, PYK, ME2) resulting in a partially growth-coupled design;
(c) wild-type strain vs. double-deletion mutant (ACALD, LDH_D) resulting in a fully growth-coupled design; (d–f) EM distribution of the wild-type (light gray) and the
respective mutant strains in (a–c) (purple). The EM yield locations correspond to vertices in the flux solution space at the maximal glucose uptake rate. (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this paper.)
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the latter with differential evolution (Choon et al., 2014). Since
heuristic methods do not guarantee a globally optimal solution, it
is advantageous to experiment with multiple optimization strate-
gies. The hybrid method GDLS combines an heuristic global search
approach with a local search method for more efficiently scanning
the solution space of genetic designs (Lun et al., 2009).

Gene deletions represent only a subset of the genetic manip-
ulations that can be performed in vivo in order to redirect
metabolic flux towards a target metabolite. In many applications
it is necessary to up-regulate pathways that would become
production bottlenecks, or to down-regulate a pathway where a
full deletion would otherwise be lethal. OptReg is an extension of
OptKnock that accounts for up/down-regulation of gene expres-
sion as well as gene deletions (Pharkya and Maranas, 2006). In
order to account for the effects of transcriptional regulation, Kim
and Reed introduced OptORF, which includes transcriptional
regulatory constraints as part of its formulation (Kim and Reed,
2010). With this method it is also possible to simulate manipula-
tions directly at the gene level rather than at the reaction level.
Other approaches that account for gene modulation targets
include EMILiO (Yang et al., 2011) and CosMos (Cotten and Reed,
2013). These two methods simulate the effect of gene up-
regulation by forcing an increase in the flux of the respective
reaction, which may not always be realistic as increasing gene or
protein expression in vivo is not guaranteed to increase the flux
through the corresponding reaction. The Redirector method takes
a different approach by modeling up-regulations as negative
weights in the cellular objective, reflecting the trade-off between
cellular growth and the cost of amplifying the desired pathways
(Rockwell et al., 2013).

All the methods mentioned so far rely on the simulation of a
particular flux distribution for the proposed mutant strain. How-
ever, these simulations may not realistically reflect the metabolic
response to the proposed genetic perturbations. This discrepancy
between in silico and in vivo response can result in misleading
design strategies. A more reliable alternative is to directly compare
the metabolic fluxes of the wild-type and the desired mutant
strain, and observe which fluxes must necessarily change in order
to obtain the desired phenotype. This kind of approach has been
implemented in FSEOF (later extended to FVSEOF) using an
iterative search method that scans the production envelope to
detect flux changes (Choi et al., 2010; Park et al., 2012). The
OptForce method allows finding optimal intervention sets of
minimal size by first calculating flux variability ranges in a manner
similar to FSEOF and then using bilevel optimization to find the
minimal set (Ranganathan et al., 2010).

The majority of methods described above focus on predicting
which manipulations of native genes would result in increased
production of a desired metabolite. However, in actual cell factory
development project the focus is often on expression of hetero-
logous genes to enable introducing new biosynthetic capabilities
to the host organism. OptStrain, one of the first extensions of
OptKnock, was developed to account for heterologous gene
expression by inserting reactions that are retrieved from an
universal metabolic reaction database (Pharkya et al., 2004).
SimOptStrain improves OptStrain by performing additions and
deletions simultaneously, resulting in novel design solutions that
would not be found otherwise (Kim et al., 2011). The OptSwap
method presents the option of replacing native oxidoreductase
enzymes with heterologous versions with different co-factor
specificities (NADH or NADPH), resulting in growth-coupled
designs with significantly higher yields (King and Feist, 2013).

There are few other constraint-based approaches worth men-
tioning, which are not so commonly referenced and do not fall into
the categories described above. These include GDBB, implement-
ing a truncated branch and bound technique (Egen and Lun, 2012);

CCopt, based on probabilistic flux bounds (Yousofshahi et al.,
2013); FastPros, with a new iterative design based on shadow-
price information (Ohno et al., 2013); Constrictor, with combina-
torial search of down-regulation targets (Erickson et al., 2014); and
multi-objective search methods based on Pareto front analysis
such as MOFBA (Oh et al., 2009) and GDMO (Costanza et al., 2012).
An in-depth analysis of each of these methods is out of the scope
of this review.

3. EMA-based methods

Methods based on EMA have been evolving in parallel with the
constraint-based methods described previously. In general, ele-
mentary mode (EM) enumeration is computationally expensive
due to the combinatorial explosion in the number of EMs as a
function of network size. On the other hand, since EMs fully
describe the steady-state solution space, once the EM set is
enumerated, the impact of structural changes in the metabolic
network regarding specific phenotypes such as a desirable meta-
bolite production can be assessed very efficiently. For instance, the
solution space of a deletion mutant is precisely described by the
subset of EMs that do not contain the respective reaction(s).

In 2004, Klamt and Gilles introduced the concept of minimal
cut sets (MCS). These are the minimal sets of reaction deletions
required to fully block an undesired function in a metabolic
network (Klamt and Gilles, 2004). MCSs and EMs are dual proper-
ties of metabolic networks, and one can be computed from the
other. From a metabolic engineering perspective, this approach
can be used to block the production of undesired by-products
including common overflow metabolites such as acetate, ethanol,
or glycerol, in order to route flux towards a more desirable
product.

As an alternative to MCSs, Trinh and co-workers developed the
method of minimal metabolic functionality (MMF), a greedy
search approach for determining reaction deletions that reduce a
metabolic network to its most efficient pathways (Trinh et al.,
2006). One advantage of MMF is that a prioritized list of inter-
ventions is given, sorted by their impact on network flexibility (i.e.
the number of pathways that can carry a given flux).

One limitation of the MCS and MMF approaches is that the
elimination of undesired functionality from the network can result
in the elimination of desired functionality as well. To address this
problem, Hädicke and Klamt introduced constrained minimal cut
sets (cMCS) (Hädicke and Klamt, 2011). This is a generalization of
MCS to account for a set of desired EMs that must be preserved
when the undesired EMs are eliminated. The authors show that
other strain-design methods such as MMF, OptKnock and Robust-
Knock can be implemented as particular cases of cMCS. The
SSDesign method is a reformulation of MMF that also includes
additional constraints for preserving a minimum set of EMs with
desired properties during the elimination steps (Toya et al., 2014).

Two other methods to find optimal deletions include an
extension of cMCS with gene-protein-reaction (GPR) constraints,
which allows a direct analysis of gene (rather than reaction)
deletions (Jungreuthmayer and Zanghellini, 2012), and the iStruF
method that searches for reaction deletions based on a flux
estimation method named structural fluxes (Soons et al., 2013).
An application of MCS for gene essentiality prediction at the
genome-scale (NetKO) was performed by decomposing the net-
work into so-called pathway fragments (Imielinski and Belta,
2008).

EMA-based method have also been used to determine gene up/
down-regulation targets that redirect metabolic flux towards the
target product. One of the first EMA-based methods to implement
this kind of interventions was FluxDesign (Melzer et al., 2009).

D. Machado, M.J. Herrgård / Metabolic Engineering Communications 2 (2015) 85–9288



This method computes the correlations between fluxes through
each reaction and the target reaction in the set of EMs. Strongly
positive or negative correlations suggest, respectively, overexpres-
sion or deletion targets. This method can be considered to be
analogous to the FSEOF method introduced above.

CASOP, from the same authors of cMCS, is another method that
accounts for gene modulation to maximize, not only yield, but also
productivity (Hädicke and Klamt, 2010). This method searches for
manipulation strategies with an optimal trade-off between pro-
duct yield and network flexibility. Here, the network flexibility is
used as a measure of network capacity (i.e. the total flux carried by
a pathway), which is interpreted as an indicator for the specific
production rate.

As mentioned earlier, one of the main limitations of EMA is that
the number of EMs grows exponentially with the size of the
metabolic network. Since this makes full EM enumeration imprac-
tical at the genome scale, a more feasible alternative might be to
compute a subset of the full EM set by random sampling (Kaleta
et al., 2009; Machado et al., 2012). This kind of approach was
implemented in CASOP-GS, which extends CASOP to the genome
scale (Bohl et al., 2010).

The issue of computational feasibility was also addressed by
the MILP approach introduced by de Figueredo et al. that allows
computing the K-shortest EMs at the genome-scale. Extending this
work, von Kamp and Klamt recently introduced MCSEnumerator, a
method to compute the smallest MCSs in genome-scale models by
exploiting the duality between MCSs and EMs (von Kamp and
Klamt, 2014). With this method the authors were able to enumer-
ate an unprecedented number of intervention strategies, including
an exhaustive enumeration of up to 7 simultaneous deletions
using a genome-scale model of E. coli. The design strategies found
by MCSEnumerator included strain design strategies that were not
previously found with OptKnock (Feist et al., 2010).

4. Applications

Strain design methods are usually published with practical case
studies proposing specific strain design strategies. Most of the case
studies have used E. coli as the model organism as the genome-
scale metabolic models for this organism have continued to be the
most predictive of all models. The most popular target products
considered in the case studies were succinate (20 cases), ethanol
(12), lactate (9), acetate (5), fumarate (5) and glycerol (5). Unfortu-
nately, one of the main drawbacks of most methods is the lack of
experimental validation of the proposed strain designs, as most of
the designs are only evaluated in silico by comparison with
previously explored experimental design strategies that had pro-
ven to be successful. Only four of the methods reviewed herein
(CiED, MMF, FSEOF, FVSEOF) have included experimental valida-
tion of the design suggestions in their original publication. In some
cases (OptORF, Redirector, CASOP, SSDesign) a comparison of the
selected manipulation targets with previously published strain
designs is presented. However, this does not allow us to make
conclusions about quantitative predictions, since the in silico and
previously experimentally validated designs are only partially the
same. Despite this apparent gap between computational work and
experimental validation, there are examples of utilization of these
methods in successful applications (Table S1).

OptKnock was used to find growth-coupled designs for lactate
production in E. coli (Fong et al., 2005). Three proposed knock-out
designs were implemented in vivo and subjected to adaptive
evolution with selection for increased growth rate. It was observed
that all the strains evolved in the direction of the predicted
phenotype of increased L-lactate production. OptKnock was also
used for identifying strain designs that increase the respiratory

rate of G. sulfurreducens (Izallalen et al., 2008), the production of
1,4-butanediol in E. coli (Yim et al., 2011), and the production of
2,3-butanediol in yeast (Ng et al., 2012).

OptGene has been used to optimize the production of multiple
products in yeast. Deletion targets for non-growth-coupled pro-
duction of sesquiterpene (Asadollahi et al., 2009) and vanillin
(Brochado et al., 2010) were found using MOMA for simulation of
the mutant phenotypes. On the other hand, using FBA for simula-
tion, a growth-coupled design strategy for succinate production
was obtained with OptGene. The growth-coupled mutant was
further optimized by adaptive laboratory evolution, followed by a
second round of metabolic engineering, resulting in a final 30-fold
improvement in succinate titer (Otero et al., 2013).

Another evolutionary optimization-based approach, CiED, was
used in combination with MOMA to find gene deletion strategies
to increase the intracellular pools of malonyl-CoA (Fowler et al.,
2009) and NADPH (Chemler et al., 2010) in E. coli. These are two
important precursors for the production recombinant natural
products. The resulting strains showed not only an increase in
intracellular concentrations of these precursors, but also increased
production titers of multiple flavonoids (naringenin, eriodictyol,
leucocyanidin, and (þ)-catechin).

OptForce was also used to address the increase of intracellular
malonyl-CoA concentration for production of heterologous com-
pounds in E. coli. A combination of gene overexpression and
deletions resulted in a 4-fold increase in malonyl-CoA concentra-
tion relative to the wild-type strain (Xu et al., 2011). This method
was also used for fatty acid production in E. coli, in a study where
39% of the maximum theoretical yield was reached (Ranganathan
et al., 2012).

FSEOF and FVSEOF were respectively used to find gene up-
regulation targets for lycopene (Choi et al., 2010) and putrescine
(Park et al., 2012) production in E. coli. Recently, FSEOF was used to
find gene up-regulation targets for actinorhodin production in S.
coelicolor, resulting in a 52-fold increase in product titers (Kim
et al., 2014).

Of the EMA-based approaches, only MMF and FluxDesign seem
to have been used in practical applications so far. MMF has been
used in multiple applications in E. coli. In its original publication,
this method was used to reach increased yields of biomass on
glucose (Trinh et al., 2006). Later, MMF was used to improve the
production of ethanol from a mixture of glucose and xylose (Trinh
et al., 2008) and from glycerol (Trinh and Srienc, 2009). In both
cases the experimentally obtained yields (0.49 and 0.45 g/g) were
remarkably close to the theoretical predictions (0.36–0.51 and
0.50 g/g, respectively). Note that these designs require a high
number of deletions, compared to methods such as OptKnock,
with a total of 8 and 9 gene deletions, respectively. MMF was also
used to obtain designs for increased production of isobutanol
(Trinh et al., 2011) and diapolycopendial (Unrean et al., 2010).
However, in these cases the match between the predicted and
experimental yields was not was not as good as in the case of
ethanol production.

FluxDesign was used to find gene up-regulation and deletion
targets for the production of lysine in C. glutamicum (Neuner and
Heinzle, 2011; Becker et al., 2011). In one case a high yield of 0.55
(g/g glucose) was reached (Becker et al., 2011). This method
was also used to improve isobutanol production in B. subtilis
(Li et al., 2012), and poly-hydroxyalkanoates production in P.
putida (Poblete-Castro et al., 2013). In the latter study, the experi-
mental results confirmed the design suggested by FluxDesign
and disproved a different design that had been proposed with
OptKnock.

Finally, it is important to highlight the numerous model-guided
applications that do not use targeted optimization methods like
the ones described so far. We performed a literature survey,
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expanding a previous survey by Xu et al. (2013a) (Table S1). It can
be observed that the production titers and yields of many products
have been improved with model-guided simulations without the
use of methods for optimized search of genetic modifications.
Lycopene titers in E. coli were increased up to 8.5-fold using a
model-guided strategy that included combinatorial simulations of
single, double and triple deletion mutants (Alper et al., 2005a,b).
Other applications of combinatorial simulation of gene deletions in
E. coli have resulted in the development of high producing strains,
including a 7-fold increase in succinate titer (Lee et al., 2005), a
7.4-fold increase in molar yield of 3HP production from glycerol
(Tokuyama et al., 2014), and a high production yield of L-valine
(0.378 g/g) from glucose (Park et al., 2007). Instead of simulating
all gene deletions, one can also combine biological intuition on
potential manipulation candidates with computational analysis to
observe the flux response of the target reaction with respect to the
given candidates (flux response analysis). This method was used to
select gene manipulations in E. coli that achieved a high yield of
L-threonine (0.393 g/g) from glucose (Lee et al., 2007). This
method has also be used to determine optimal feeding strategies
in fed-batch cultivations (Park et al., 2011).

5. Discussion

Strain design approaches based on flux balance and elementary
mode analysis have been co-evolving independently. In both cases,
the genetic designs have been extended to include not only gene
deletions but also gene up/down-regulation and addition of
heterologous genes.

The number of constraint-based methods that have been
suggested for strain design is significantly higher than the number
of EMA-based methods. This is a likely consequence of the
computational limitations of the latter, requiring access to high
performance computing resources. Given the recent advances that
have raised the power of EMA to the genome scale (de Figueiredo
et al., 2009; von Kamp and Klamt, 2014) it is possible that EMA-
based approaches will be increasingly explored. Constraint-based
approaches have limitations in their predictive power due to the
potential biases introduced by using phenotype simulation to
predict metabolic flux distributions. Recent methods have begun
to circumvent this problem by comparing flux ranges instead of
simulating particular solutions for each genetic modification
(Ranganathan et al., 2010; Choi et al., 2010).

With the decreasing bias of constraint-based methods, the
increasing ability of EMA-based methods to compute with larger
networks, and the support for more types of genetic modifications
for both methods, the gap between these approaches is diminish-
ing. However, there are still fundamental differences between the
methods that may lead to different results. Most constraint-based
methods search for genetic modifications that shape the solution
space in a way that favors the coupling between growth and
production of the target compound at the point of optimality (i.e.
partial growth-coupling) (Fig. 2b). Reaching a suitable shape may
require multiple, possibly unintuitive, simultaneous modifications.
During in silico simulations, the effect of single modifications on
product flux is negligible until a suitable combination is found,
making it difficult to implement an iterative strain engineering
process where only a few genetic modifications at a time are
introduced.

On the other hand, EMA-based methods try to eliminate (or
decrease the utilization of) EMs that do not produce the target
compound. A fully growth-coupled design is obtained if such EMs are
completely eliminated (Fig. 2f). However, each modification alters the
EM distribution in the solution space even if the production envelope
is unaltered. Since the impact of a modification is measured by the

number of affected EMs, there are no “silent” modifications in EMA-
based design. This allows utilizing an iterative strain engineering
process where only a few modifications at a time are introduced.
While this is an advantage of EM-based approaches, the resulting
designs tend to contain a larger number of modifications compared
to constraint-based designs.

The lack of experimental validation hampers a critical compar-
ison of the different methods. The cases of successful applications
that have been published so far seem to be concentrated around a
few well established methods. The successful results show that
strain design methods are indeed a useful tool for guiding
metabolic engineering applications. However, it is not straightfor-
ward to make a quantitative assessment of the expected results,
since the predictions are based on yields and in many cases only
the final product titers are reported.

Growth-coupled designs obtained with FBA seem to result in a
good match between in silico and in vivo results after adaptation of
the mutant strains (Fong et al., 2005; Otero et al., 2013). This is
consistent with the observation that FBA is suitable to predict the
phenotype of evolved strains (Lewis et al., 2010). For MOMA-based
predictions there can be some discrepancy between predicted and
experimental yields (Asadollahi et al., 2009), which is probably
true for non-growth-coupled strain designs in general. In these
cases, as well as for designs based on gene modulation, the
proposed interventions should be regarded as qualitative, rather
than quantitative, predictions. Employing these types of predic-
tions in vivo will require testing multiple alternative predictions in
a combinatorial fashion to find the optimal design.

So far, EMA-based designs have been computed based on core
metabolic models. Although these models have a limited scope
compared to genome-scale models, this may not reduce their
applicability in metabolic engineering. A possible reason is that, in
most strain designs, the intervention targets are enzymes in
central metabolic pathways. With designs obtained with core
models, the system-wide impact of the proposed genetic mod-
ifications can be simulated using genome-scale models. For
instance, the growth-coupled design shown in Fig. 2c does not
result in growth coupling of succinate production in the respective
genome-scale model (Feist et al., 2007). This is due to an
alternative pathway for acetaldehyde production from acetyl-
CoA using 2-amino-3-oxobutanoate and allo-threonine as inter-
mediates. This alternative pathway can be eliminated with an
additional knockout of one of the steps. Hence, the designs
obtained with core models are often subsets of more complex
designs that can be obtained with genome-scale models. Succinate
overproducing mutants have been successfully obtained by dele-
tion of the central acetaldehyde dehydrogenase without eliminat-
ing the alternative acetaldehyde production pathway (Sánchez
et al., 2006; Jantama et al., 2008). Hence, it is unlikely that most of
the carbon flux would be rerouted through this pathway in the
mutant strain, but if this strain is subjected to adaptive evolution
under growth selection, the alternative pathway may get activated
thus reducing succinate production. Experimental results show
that EMA-based predictions using core models are highly accurate
for central carbon metabolism (Trinh et al., 2008; Trinh and Srienc,
2009). However, the predictive power of EMA-based designs
seems to decrease when heterologous pathways are considered,
indicating limitations in these heterologous pathways themselves
as opposed to limitations in central metabolic precursor genera-
tion (Unrean et al., 2010; Trinh et al., 2011).

One of the most important problems in bioprocess engineering is
the trade-off between yield, titer, and productivity, which are often
conflicting objectives. Since constraint-based models can only make
yield-based predictions, other parameters can only be targeted
indirectly (Patil et al., 2005; Hädicke and Klamt, 2010). The recent
DySScO framework addresses this problem by integrating dynamic
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flux balance analysis with GDLS (Zhuang et al., 2013). Another
solution for this problem is the integration of kinetic and
constraint-based modeling, in order to calculate absolute flux rates.
This kind of integration was recently implemented in k-OptForce
(Chowdhury et al., 2014). Similarly, the recent method SMET com-
bines EM analysis with ensemble modeling to identify rate limiting
steps (Flowers et al., 2013).

With the algorithmic improvements and the increasing avail-
ability of computational power, the evolution of strain design
methods will certainly become less driven by computational
efficiency, and more importantly so by the biological plausibility
of their results. Recent impressive developments in synthetic
biology methods for genome engineering such as the CRISPR/
Cas9 system (Sander and Joung, 2014) will allow implementing
more complex designs in vivo. Systematic evaluations of in silico
strain design predictions from different methods will hopefully
become the norm rather than the exception in the future.
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