8 research outputs found

    Defect-engineered metal-organic frameworks (MOF-808) towards the improved adsorptive removal of organic dyes and chromium (vi) species from water

    Get PDF
    In this work, two defective zirconium-based metal-organic frameworks (Zr-MOFs), MOF-808-OH and MOF-808-NH2, were synthesized by partially replacing the 1,3,5-benzenetricarboxylate building block with 5-hydroxyisophthalate and 5-aminoisophthalate, respectively. The structural features of the defective materials were analyzed by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), nitrogen physisorption at 77 K, and thermogravimetric analysis (TGA). Importantly, the number of defect sites determined via proton nuclear magnetic resonance (1H-NMR) analysis of the digested materials was approximately 7 mol% for MOF-808-OH and 3 mol% for MOF-808-NH2. The presence of the defect sites increased the number of acidic centers on Zr-clusters originating from missing-linker nodes which accounted for a remarkable adsorption capacity towards various anionic organic dyes and chromium (vi) species. Compared to standard MOF-808, the defect-engineered ones showed significant increments by 30-60% in trapping capacity for anionic contaminants including sunset yellow, quinoline yellow, methyl orange, and potassium dichromate, while they exhibited modest improvements by 5-15% in the removal of cationic dyes, namely malachite green and methylene blue

    A copper-mediated reverse aromatic Finkelstein reaction in ionic liquid

    No full text
    We have developed a general method for reverse aromatic Finkelstein reactions. Good reaction yields were obtained when aryl iodides or aryl bromides were treated with copper halide salts as promoters in a 1-butyl-3-methylimidazolium bromide ([BMIM]Br) ionic liquid (IL) solvent at 140 °C for 8 h. Preliminary investigation supported that the copper salts were also the halide sources in halogen exchange reactions. The optimized conditions are applicable to a variety of substrates and have excellent functional group tolerance. Additionally, the [BMIM]Br solvent showed good stability for at least 10 consecutive runs. Results indicated that the [BMIM]Br solvent was recyclable for reverse aromatic Finkelstein reactions
    corecore