157 research outputs found

    Large deviations for clocks of self-similar processes

    Full text link
    The Lamperti correspondence gives a prominent role to two random time changes: the exponential functional of a L\'evy process drifting to ∞\infty and its inverse, the clock of the corresponding positive self-similar process. We describe here asymptotical properties of these clocks in large time, extending the results of Yor and Zani

    On Eigenvalue spacings for the 1-D Anderson model with singular site distribution

    Full text link
    We study eigenvalue spacings and local eigenvalue statistics for 1D lattice Schrodinger operators with Holder regular potential, obtaining a version of Minami's inequality and Poisson statistics for the local eigenvalue spacings. The main additional new input are regular properties of the Furstenberg measures and the density of states obtained in some of the author's earlier work.Comment: 13 page

    Transient backbending behavior in the Ising model with fixed magnetization

    Full text link
    The physical origin of the backbendings in the equations of state of finite but not necessarily small systems is studied in the Ising model with fixed magnetization (IMFM) by means of the topological properties of the observable distributions and the analysis of the largest cluster with increasing lattice size. Looking at the convexity anomalies of the IMFM thermodynamic potential, it is shown that the order of the transition at the thermodynamic limit can be recognized in finite systems independently of the lattice size. General statistical mechanics arguments and analytical calculations suggest that the backbending in the caloric curve is a transient behaviour which should not converge to a plateau in the thermodynamic limit, while the first order transition is signalled by a discontinuity in other observables.Comment: 24 pages, 11 figure

    A new mechanism of mass protection for fermions

    Get PDF
    We present a way of protecting a Dirac fermion interacting with a scalar (Higgs) field from getting a mass from the vacuum. It is obtained through an implementation of translational symmetry when the theory is formulated with a momentum cutoff, which forbids the usual Yukawa term. We consider that this mechanism can help to understand the smallness of neutrino masses without a tuning of the Yukawa coupling. The prohibition of the Yukawa term for the neutrino forbids at the same time a gauge coupling between the right-handed electron and neutrino. We prove that this mechanism can be implemented on the lattice.Comment: LATTICE99(Higgs,Yukawa,SUSY), 3 page

    Role of isospin in the nuclear liquid-gas phase transition

    Get PDF
    We study the thermodynamics of asymmetric nuclear matter using a mean field approximation with a Skyrme effective interaction, in order to establish its phase diagram and more particularly the influence of isospin on the order of the transition. A new statistical method is introduced to study the thermodynamics of a multifluid system, keeping only one density fixed the others being replaced by their intensive conjugated variables. In this ensemble phase coexistence reduces to a simple one dimensional Maxwell construction. For a fixed temperature under a critical value, a coexistence line is obtained in the plane of neutron and proton chemical potentials. Along this line the grand potential presents a discontinuous slope showing that the transition is first order except at the two ending points where it becomes second order. This result is not in contradiction with the already reported occurrence of a continuous transformation when a constant proton fraction is imposed. Indeed, the proton fraction being an order parameter in asymmetric matter, the constraint can only be fulfilled by gradual phase mixing along the first-order phase transition line leading to a continuous pressure.Comment: To appear in Nuclear Physics

    Non equilibrium effects in fragmentation

    Get PDF
    We study, using molecular dynamics techniques, how boundary conditions affect the process of fragmentation of finite, highly excited, Lennard-Jones systems. We analyze the behavior of the caloric curves (CC), the associated thermal response functions (TRF) and cluster mass distributions for constrained and unconstrained hot drops. It is shown that the resulting CC's for the constrained case differ from the one in the unconstrained case, mainly in the presence of a ``vapor branch''. This branch is absent in the free expanding case even at high energies . This effect is traced to the role played by the collective expansion motion. On the other hand, we found that the recently proposed characteristic features of a first order phase transition taking place in a finite isolated system, i.e. abnormally large kinetic energy fluctuations and a negative branch in the TRF, are present for the constrained (dilute) as well the unconstrained case. The microscopic origin of this behavior is also analyzed.Comment: 21 pages, 11 figure

    Time Scale Approach for Chirp Detection

    Get PDF
    International audienceTwo different approaches for joint detection and estimation of signals embedded in stationary random noise are considered and compared, for the subclass of amplitude and frequency modulated signals. Matched filter approaches are compared to time-frequency and time scale based approaches. Particular attention is paid to the case of the so-called " power-law chirps " , characterized by monomial and polynomial amplitude and frequency functions. As target application, the problem of gravitational waves at interferometric detectors is considered

    Experimental Signals of Phase Transition

    Full text link
    The connection between the thermodynamics of charged finite nuclear systems and the asymptotically measured partitions is presented. Some open questions, concerning in particular equilibrium partitions are discussed. We show a detailed comparison of the decay patterns in Au+ C,Cu,Au central collisions and in Au quasi-projectile events. Observation of abnormally large fluctuations in carefully selected samples of data is reported as an indication of a first order phase transition (negative heat capacity) in the nuclear equation of state.Comment: 8 pages, 8th International Conference on Nucleus-Nucleus Collisions, Moscow 200

    Color confinement and dual superconductivity of the vacuum. III

    Full text link
    It is demonstrated that monopole condensation in the confined phase of SU(2) and SU(3) gauge theories is independent of the specific Abelian projection used to define the monopoles. Hence the dual excitations which condense in the vacuum to produce confinement must have magnetic U(1) charge in all the Abelian projections. Some physical implications of this result are discussed.Comment: 6 pages, 5 postscript figure
    • 

    corecore