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Two different approaches for joint detection and estimation of signals embedded in

stationary random noise are considered and compared, for the subclass of amplitude and

frequency modulated signals. Matched filter approaches are compared to time-frequency
and time scale based approaches. Particular attention is paid to the case of the so-called

“power-law chirps”, characterized by monomial and polynomial amplitude and frequency
functions. As target application, the problem of gravitational waves at interferometric

detectors is considered.
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1. Introduction

The problem of joint detection and estimation of parametrized signals embedded in
stationary random noise is generally considered a difficult one, since it combines two
difficulties. Traditional approaches often rely on variations around generalized cor-
relations and ambiguity functions. More specifically, a generalized “cross ambiguity
function” between the observed signal and templates of the expected signals, and
the maxima of this ambiguity function which are above some threshold yield candi-
date “events”. However, such approaches may happen to lack of robustness and/or
become particularly expensive (in terms of computational cost) for some classes of
signals. This is mainly due to the fact that for some signal classes, ambiguity func-
tions may feature sharp variations, which yield either a lack of robustness or high
computational costs. In such situations, one may turn to alternatives, which are
generally suboptimal in terms of detection (i.e yield higher non-detection or false
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alarm probabilities), but turn out to be more robust or computationally simpler.
In this paper, we focus on the particular case of amplitude and frequency mod-

ulated signals, and study an alternative approach based on the continuous wavelet
transform. It may be shown that the continuous wavelet transform of such sig-
nals generally enjoys sharp localization properties in the time-scale plane, which
may be exploited in a suitable detection algorithm. The latter may be expected
to underperform the ambiguity function approach in terms of pure detection (false
alarm or missed detections), but also to behave better in terms of robustness and
computational burden.

The main idea we follow here consists in seeking optimal curves in the time-scale
plane, i.e. curves which optimize some “time-scale energy”. The optimal curves are
searched within a parametric family, the parameters being put into correspondence
with the instantaneous frequency of the seeked signal. The so-obtained energy func-
tion turns out to have much slower variations than the ambiguity functions, which
simplifies the detection procedure. However, such simplifications also yield a low-
ering of the detection performances of the algorithm. It is one of the goals of this
paper to study this tradeoff.

As target application, we consider the problem of detection/estimation of grav-
itational waves at interferometric detectors. The existence of such waves was pre-
dicted long ago by general relativity, but no direct observation could be done so far.
Large scale experiments are currently being prepared (among which the VIRGO2,
LIGO1 and TAMA projects), which should be able to provide such direct obser-
vations. Among the potential sources for gravity waves, the waves generated by
coalescing binary star systems are particularly appealing, since the corresponding
waveform is fairly well-known, and may be given (to some approximation degree)
an explicit expression. It takes the form of a power law chirp (i.e. a frequency and
amplitude modulated signal, with power law instantaneous frequency), embedded
into stationary random noise, with prescribed spectral density. The two approaches
described above may be adapted to this context. We present the general theory asso-
ciated to the detection of such “power law chirps” using generalized cross-ambiguity
functions (i.e. banks of matched filters) and continuous wavelet transform line inte-
grals, and discuss corresponding numerical results. The first results on comparison
of the two approaches in terms of detection performances are also given.

The present paper is organized as follows. We first discuss (Section 2) in some de-
tails the problem of joint signal detection and estimation, and introduce the gereral-
ized cross ambiguity function as the optimal solution to this problem. We also con-
sider the class of amplitude and frequency modulated signals (the so-called chirps),
and provide estimates (using oscillatory integrals approximation techniques) for the
behavior of the ambiguity function for such signal classes. We then describe and
study in Section 3 the proposed alternative approach, based upon wavelet trans-
form ridge detection, and provide indications about its behavior for the considered
signals. We also provide estimates for the behavior of the continuous wavelet trans-
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form of the considered signal. We then turn to the application to gravitational
waves detection in Section 4, and compare the performances of the two approaches
on simulated gravitational signals. The numerical results obtained in the absence
of noise provide numerical confirmations for the approximations obtained in the
previous sections, and show the relevance of the approaches under consideration.
Numerical simulations for noisy signals in physically realistic situations are also pre-
sented, which illustrate the domain values of parameters within which the wavelet
transform line integral approach may be considered a suitable alternative to the am-
biguity function approach. Some more mathematical aspects (in particular, proofs
of some estimates) are also discussed in appendices.

2. Joint detection/estimation, chirps and cross-ambiguity
functions

2.1. Problem statement

We consider the following joint detection-estimation problem: Let a parametric
family of signals {xθ, θ ∈ Θ} be givena, θ ∈ Θ being a multidimensional parameter.
Assume that we are given observations of the form

H0 : y(t) = Xt ,

H1 : y(t) = Axθ(t) +Xt ,
(2.1)

where A ∈ R+ is an (unknown) multiplicative constant, and X is a noise, modeled
as a gaussian random process. The considered problem involves simultaneously
hypothesis testing (decide whether the signal is present or not) and parameter
estimation (under the H1 hypothesis, estimate the vector parameter θ ∈ Θ).

In this paper, we shall always assume that the noise X is modelled as a gaus-
sian second order random process, second order continuous and stationary.15,16 We
assume further that its spectral measure dνX is absolutely continuous. As a result,
the noise process X is completely characterized by its power spectral density SX :
its covariance function CX satisfies

CX(t, s) = E
{
XtXs

}
= CX(t− s) =

∫ ∞

−∞
e2iπν(t−s)SX(ν) dν . (2.2)

The corresponding covariance operator will be denoted by CX :

CXf(t) =
∫ ∞

−∞
CX(t− s)f(s) ds ,

and we introduce

EX = {x ∈ L2(R),C−1/2
X x ∈ L2(R)} .

aFor the sake of simplicity, we assume that signals xθ are analog signals, i.e. functions over the

real line. The present discussion may easily be adapted to numeric signals, or signals defined on
bounded intervals, after suitable choice of boundary conditions.
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A traditional approach typically makes use of the so-called cross-ambiguity function.

Definition 2.1. Let {xθ ∈ EX , θ ∈ Θ} be a parametric class of finite energy signals,
assumed to be embedded in zero mean, second order continuous and stationary
random noise with spectral density SX . Given a signal f ∈ EX , the corresponding
generalized ambiguity functionb is defined by the mapping

θ → A
(n)
f (θ) =

〈f,C−1
X xθ〉√

〈xθ,C−1
X xθ〉

. (2.3)

Coming back to the signal model (2.1) we have, under the H1 hypothesis

A (n)
y (θ) = AA (n)

xθ0
(θ) +N(θ) .

The first term is the output signal and the second is the output noise. Considering
the “signal” term, the following statement is a direct consequence of the Schwarz
inequality.

Proposition 2.1. Under the assumptions of Definition 2.1, for θ0 ∈ Θ and for all
θ ∈ Θ such that xθ and xθ0 are linearly independent,∣∣∣A (n)

xθ0
(θ)
∣∣∣ ≤ A (n)

xθ0
(θ0) , (2.4)

with equality if and only if θ = θ0.

The noise term is a gaussian random function of θ. Clearly, E {N(θ)} = 0, and
Var(N(θ)) = 1. Hence, the optimal SNRc is given by

ρ =
A

(n)
xθ0

(θ0)√
Var(N(θ))

= A (n)
xθ0

(θ0) = ‖C−1/2
X xθ0‖ .

This result is the basis of the usual detection-estimation algorithms: given an
observed signal y, the following operations are performed

(i) Compute the values of the generalized cross-ambiguity function A
(n)
y (θ), for a

(suitably sampled) set of values for the parameters θ.
(ii) The values of θ such that A

(n)
y (θ) exceeds a fixed threshold are candidates for

possible “events”.

Remark 2.1. Clearly enough, the “speed” of variation of the ambiguity function
plays a key role in the detection problem. Rapidly varying functions A (n) require
a dense sampling of the parameter set, and thus yields high computational costs.
Conversely, an unsufficiently dense sampling of the parameter set increases the
risk of “missing the maximal value” of A (n), and lowers the performances of the
algorithm.

bthe superscript “(n)” stands for “normalized”.
cSNR stands for “Signal to Noise Ratio”.
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Remark 2.2. The choice of the threshold is another important issue: it controls
the rate of false alarms (values of A (n) larger than the threshold due to noise), and
missed detections (situations where A (n)(θ) is smaller than the threshold, despite
of the presence of signal, again because of noise). Practical strategies consist in
adapting the threshold to a fixed admissible false alarm probability, or a fixed
admissible non-detection probability.24

Remark 2.3. The amplitude parameter A in (2.1) is also to be estimated from
the observations. Clearly, once a signal with parameters θ0 has been detected, a
natural estimate for A is given by Â = A

(n)
y (θ0)/ρ. However, too small values of

A make detection impossible. The detectability threshold, i.e. the smallest A such
that detection is considered possible, depends on the optimal SNR ρ.

2.2. Chirps

We are concerned in this paper with signal classes formed of chirp signals. A chirp
is essentially a frequency and amplitude modulated signal, of the form

x(t) = a(t) cos(ϕ(t)) , (2.5)

and additional assumptions on the relative speed of variations of the local amplitude
a and frequency ϕ′ are generally made to ensure that the latter quantities have
physical meaning. In such situations, it is customary to work with the so-called
analytic signals, associated with such signals, and the corresponding instantaneous
amplitude and frequency:

Definition 2.2. Let x ∈ L2(R) be a finite-energy signal. The associated analytic
signal zx ∈ L2(R) is defined by its Fourier transform

zx(t) = 2
∫ ∞

0

e2iπνtx̂(ν) dν (2.6)

The canonical pair (Ax, φx) associated with x is then defined by

Ax = |zx| , φx = arg(zx) . (2.7)

Ax and φx are termed respectively instantaneous amplitude and instantaneous
phase, and φ′x is the instantaneous frequency.

It is worth mentioning that the notions of local amplitude a and frequency ϕ

which appear in (2.5) and instantaneous amplitude and frequency as in Defini-
tion 2.2 do not coincide in general9,21 (in such situations, the physical meaning of
such quantities may however become questionable.) Nevertheless, under some ad-
ditional assumptions, they may be shown to be fairly close to each other, as shown
by the following result, whose proof may be found in Appendix A.

Proposition 2.2. Let x be a chirp signal as in (2.5), such that a ∈ C1 has bounded
support and vanishes at boundaries, and ϕ ∈ C2. Assume further that the local
frequency is bounded from below: ϕ′ > K for some K ∈ R+. Then

zx(t) = a(t)eiϕ(t) + r(t) , (2.8)
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where

‖r‖∞ ≤ ‖a‖1
(
‖a′‖1
‖a‖1

∥∥∥∥ 1
ϕ′

∥∥∥∥
∞

+
∥∥∥∥ ϕ′′ϕ′2

∥∥∥∥
∞

)
. (2.9)

This simply shows that if the local amplitude and frequency vary slowly enough
on the support of the signal, the analytic signal is close to the “exponential model”
a exp(iϕ). Results in the same spirit may also be obtained in the case of signals
with infinite support, using a partition of unity.

In this work, we shall often make use of the Fourier transforms of chirp signals.
The stationary phase approximations11 provide a way to estimate such Fourier
transforms. Such approximations turn out to be extremely precise for very oscilla-
tory signals. The proof of the following result may be found in Appendix A

Proposition 2.3. Let x = a exp(iϕ), where a ∈ C2 is a positive-valued function,
and ϕ ∈ C5 is such that ϕ′ > K > 0 for some constant K. Assume further that ϕ′

is monotonic. Then, for all ν ∈ range(ϕ′)/2π, we have

x̂(ν) =
√

2π
a(ts)√
|ϕ′′(ts)|

ei(ϕ(ts)− 2πνts)eisgn(ϕ′′(ts))π/4 + r(ν) , (2.10)

where ts = ts(ν) is the (unique) solution of

ϕ′(ts) = 2πν .

The remainder r depends upon the derivatives of a and ϕ up to degrees two and
three respectively.

A precise bound for the remainder may be found in Appendix A.
Particular attention has recently been paid to the class of so-called “power-law

chirps”18. The latter are characterized by the power law behavior of their local
amplitude and phase functions, of the form

x(t) = (t0 − t)α cos
(

2πF0

β + 1
(t0 − t)β+1

)
H(t0 − t) (2.11)

(where t0 is a reference “time”, and F0 is a reference “frequency”d, and H denotes
Heaviside’s step function), to which a local frequency

ν(t) = F0(t0 − t)β (2.12)

may be associated. α and β are typically negative numbers, so that the local am-
plitude and frequency functions diverge as t → t0. An example of such power law
chirp may be found in Fig 1 below. An immediate consequence of proposition 2.3
above is the approximate expression of the Fourier transform of such power law
chirps.

deven though it does not have the physical dimension of a frequency.
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Corollary 2.1. Let x be a power law chirp as in (2.11). Then its Fourier transform
is given by

x̂(ν) = x̂0(ν) + r(ν) , (2.13)

where the leading term reads

x̂0(ν)=
1√
F0|β|

(
ν

F0

)(2α−β+1)/2β

exp
{
2iπ
(
−νt0+F−1/β

0

β

β + 1
ν(β+1)/β+

1
8

)}
(2.14)

and the remainder r behaves as in Proposition 2.3.

The validity of such approximations turn out to be quite questionable, at least
for some ranges of values of ν. In fact, the validity domain happens to depend on the
values of α and β. More precisely, it is shown in Appendix A that for β > −1, such
approximations are to be considered as low frequency approximations rather than
high frequency ones. 4,5 For β ≤ −1, such chirps fall into the class of the infinitely
oscillating functions studied in great details by Meyer and collaborators.18

2.3. Ambiguity function for power law chirp detection

In the case of power law chirp signals, the ambiguity function may be given fairly
simple approximations, which help understanding its behavior (even in more com-
plex situations).

In this section, we shall take as signal model the Fourier representation provided
by the stationary phase approximation, as in equation (2.14). As mentioned ear-
lier, the precision of such approximations happen to be quite questionable within
some frequency range for some values of the F0 parameter. However, we shall limit
ourselves to situations in which this model is accurate enough, i.e. for which the
frequency domain significantly involved in the ambiguity function is contained in
the validity domain of the approximation. This will be the case for the application
considered in Section 4.

Let us then consider a reference signal with parameters t0 and F0 defined in the
Fourier domain as in (2.14), copies with the same form and parameters denoted by
t and F , and study the corresponding generalized cross-ambiguity function. For the
sake of simplicity (to avoid heavy notations and formulas), we shall consider the
unnormalized version of the ambiguity function

Af (θ) = 〈f,C−1
X xθ〉

rather than the normalized version A (n) given in Definition 2.1. This doesn’t
change anything to the detection/estimation procedure, and the translation from
one version to another is easily done. It is easily seen that the generalized cross-
ambiguity function Af takes the form of a correlation between the input signal f
and a family of “templates” (in fact rescaled copies of a reference power law chirp
H(t)(−t)α cos(2π(−t)β+1), modified by the action of C−1

X .) Hence, the detector
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based upon generalized cross ambiguity function may also be seen as a bank of
matched filters.

By Plancherel’s theorem, we have

A(t0,F0)(t, F ) =
∫ ∞

0

x̂(t0,F0)(ν)x̂(t,F )(ν)
dν

SX(ν)
. (2.15)

For the sake of simplicity, let us first introduce a few notations. We set

∆t = t− t0 , ∆F = F−1/β − F
−1/β
0 ,

and

M(ν) =
ν(2α−β+1)/β

SX(ν)
. (2.16)

In what follows, we shall assume that M ∈ L1(R+) (such an assumption becomes
essentially academic when it comes to practical situations, as will be stressed in
Remark 4.1 below).

According to equation (2.14) above, we obtain the following form for the Am-
biguity function:

A(t0,F0)(t, F ) ≈ C(F0, F ) I (∆t,∆F ) , (2.17)

where the C(F0, F ) constant reads

C(F0, F ) =
1

|β|
√
F0F

1
(F0F )(2α−β+1)/2β

(2.18)

and the integral I (∆t,∆F ) is given by

I (∆t,∆F ) =
∫ ∞

0

ν(2α−β+1)/β

SX(ν)
exp
(
2iπ

{
ν∆t− β

β + 1
ν(β+1)/β∆F

})
dν . (2.19)

Since we assumed that M ∈ L1(R+), the latter integral is absolutely convergent,
and one obviously has |I (∆t,∆F )| ≤ I (0, 0), so that∣∣A(t0,F0)(t, F )

∣∣ ≤ 1
|β|

(F0F )−(2α+1)/2β ‖M‖1 , (2.20)

with equality if and only if ∆F = ∆t = 0. Therefore, the ambiguity function may
legitimately be used for detection purpose.

The integral I is again an oscillatory integral. In order to better understand
its behavior, we use again a stationary phase argument. For the sake of simplicity,
we set

f(ν) = 2π
{
ν∆t− β

β + 1
ν(β+1)/β∆F

}
.

When ∆t and ∆F are such that f ′ never vanishes, then an integration by parts
argument may be used to yield upper bounds for the integral. Otherwise, let us
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denote by νs a stationary pointe of f , i.e. f ′(νs) = 0. Assuming uniqueness of νs,
we have

I (∆t,∆F ) = I0(∆t,∆F ) + r(∆t,∆F ) , (2.22)

where

I0(∆t,∆F ) =
√

2πei sgn(f ′′(νs))π/4
M(νs)√
|f ′′(νs)|

eif(νs) , (2.23)

the remainder r(∆t,∆F ) being bounded as in Lemma A.2 of Appendix A. The
following result gives first indications on the existence of such stationary points,
and the corresponding behavior of the ambiguity function.

Proposition 2.4. With the same notations as above, assume M ∈ L1(R+). As-
sume further that ∆F 6= 0 and ∆t 6= 0. Then,

(1) The integral in equation (2.19) admits a stationary point νs if and only if ∆t
and ∆F have the same sign. νs is unique, and is given by

νs =
(

∆t
∆F

)β
.

(2) If ∆t and ∆F have the same sign, the leading term of the stationary phase
approximation has modulus

|I0(∆t,∆F )| =
√

3
8

(
∆F
∆t

)β/2 1√
|∆F |

1

SX

((
|∆t|
|∆F |

)β) . (2.25)

Proof. The first point results directly from the computation of the derivative of f ,
which vanishes if and only if ∆t = ν1/β∆F . For the second, we use the stationary
phase lemma11 (see Lemma A.2 in the appendix).

Such an approximation turns out to be quite accurate, as we shall see in the
numerical illustrations in Section 4.

3. Continuous wavelet transform, and the line integral detection
approach

Wavelet transform has been introduced quite some time ago by A. Grossmann and J.
Morlet10, in a context of analog signal analysis. Since then, many variations around
wavelet expansions have been derived and used in different contexts. Nevertheless,
we stick in the present work to a version close to the original one, which is best
adapted to the considered problem because of its built-in translation and scaling
invariance properties. Indeed, it may be seen easily20 that in the signal model (2.11)
the t0 parameter exactly plays the role of a time translation, and the F0 parameter
acts as a rescaling variable (more precisely, F−1/(β+1)

0 is a scale variable.)

enotice that νs depends on t, F, t0, F0.
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3.1. Continuous wavelet transforms

Let us start by briefly recalling the main features of the version of continuous
wavelet transform we shall be using in the sequel. More detailed analyses may be
found in the literature.3,6,17 Let ψ be an integrable and square-integrable function,
such that ψ̂(ν) = 0 for all ν ≤ 0, and that

0 < cψ :=
∫ ∞

0

|ψ̂(ν)|2 dν
ν
<∞ (3.26)

Functions satisfying the above properties are called progressive wavelets. Such
wavelets may be used to provide alternative representations of signals as follows.
Let x be a square-integrable real-valuedf function, and let zx denote its analytic
signal (see Definition 2.2.) Then one may write

zx =
1
cψ

∫
Tx(b, s)ψ(b,s)

ds db

s2
(3.27)

where the functions ψ(b,s) are the wavelets, shifted and rescaled copies of ψ

ψ(b,s)(t) =
1√
s
ψ

(
t− b

s

)
, (3.28)

and the coefficients Tx(b, s) defined by

Tx(b, s) = 〈x, ψ(b,s)〉 =
1√
s

∫ ∞

−∞
x(t)ψ

(
t− b

s

)
dt (3.29)

form the Continuous wavelet transform Tx ∈ L2(R×R+, dbds/s2) of x. The integral
in (3.27) runs over the half plane (b, s) ∈ R × R+. Obviously, x may be recovered
from its analytic signal as x = <(zx), where < denotes the real part, so that
Equation (3.27) provides a complete analysis-reconstruction scheme.

The wavelet transform may also be extended to the case of random signals. To
see this, consider a second order continuous and stationary random process X with
spectral density SX , and assume SX ∈ L∞. Set ψ̃s(t) = 1√

s
ψ
(
− t
s

)
. Then it is

easy to see15,16 that for any s > 0, the process T (s)
X defined by the convolution

T
(s)
X = ψ̃s ∗X ,

is itself second order continuous and stationary, and has spectral density ν →
s|ψ̂(sν)|2SX(ν). Hence, setting TX(b, s) = T

(s)
X (b), one may define the wavelet

transform of the random signal X as the family TX of random processes {T (s)
X , s ∈

R+}. If ψ has zero integral, then E {TX(b, s)} = 0 for all b, s. In addition, one
easily sees3 that E

{
TX(b, s)TX(b′, s′)

}
= 〈ψ(b′,s′),CXψ(b,s)〉. Finally, if the noise is

assumed gaussian as before, the wavelet transform is also gaussian.

In what follows, considering the situation where a signal x has been embedded
into a random noise X as above (with fixed spectral density SX and covariance

fwe shall always make this assumption from now on
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operator denoted by CX), we shall use a slightly different wavelet transform, the
corresponding pre-whitened wavelet transform Wx, defined as follows:

Wx(b, s) = 〈x,C−1/2
X ψ(b,s)〉 . (3.30)

Clearly enough, the pre-whitened wavelet transform of the random noise X reduces
to a classical wavelet transform of a white noise. In particular, using the same
notations as above, one has

E {WX(b, s)} = 0 , (3.31)

E
{
WX(b, s)WX(b′, s′)

}
= 〈ψ(b′,s′) , ψ(b,s)〉 , (3.32)

Var{WX(b, s)} = ‖ψ‖2 . (3.33)

The purpose of this transform is to obtain a constant variance wavelet transform.

3.2. Wavelet transform of chirps

We essentially follow here refs 8,22. Let us consider a model signal of the form (2.5)
where the amplitude and phase functions are assumed to be twice and four times
continuously differentiable respectively, and assume that the amplitude a(t) is
slowly varying compared to the oscillations. Let us consider a complex-valued (pro-
gressive) analyzing wavelet, which we write in the form

ψ(t) = aψ(t)eiϕψ(t) , (3.34)

and assume for the sake of simplicity that the (positive) amplitude aψ is smooth
and maximal at t = 0, with |ψ(0)| = 1, and that the wavelet is a linear phase one,
i.e. is such that ϕ′ψ(t) = ω0 = 2π. Then writing the continuous wavelet transform
as an oscillatory integral, and approximating the integral by means of the sta-
tionary phase method (see Lemma A.2 in the appendix), we obtain the following
approximate expression8 for the wavelet transform of (2.5):

Tx(b, s) ≈
√
π

2
eiπsgn(Φ′′

(b,s)(ts))/4√
s|Φ′′(b,s)(ts)|

ψ

(
ts − b

s

)
zx(ts) , (3.35)

where Φ(b,s)(t) is the argument of the integrand, and the symbol sgn(t) stands for
the sign of t. ts = ts(b, s) is a stationary point of the integrand, i.e. a value of the
argument such that Φ′(b,s)(ts) = 0. In addition, it is assumed that for any (b, s) under
consideration, there exists one and only one such point, and that Φ′′(b,s)(ts) 6= 0
(otherwise, higher order approximations have to be used).

Such stationary points have a very simple intuitive meaning: they represent the
values of the integrand for which the oscillations of the wavelet match perfectly
those of the signal. The precision of the approximation in (3.35) depends on the
“speed of variations” of the oscillations of the integrand compared to its amplitude.
However, the integrand involves both the signal and the scaled wavelet.
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An alternative may be derived in the particular case of the so-called Morlet
wavelet

ψ(t) = e−t
2/2σ2

eiω0t , (3.36)

where the stationary phase argument may be refinedg to yield the following ap-
proximation

Proposition 3.1. Let x be a chirp signal as in (2.5), and let ψ be the Morlet
wavelet. Then

Tx(b, s) =
√
π

2
ei arctan(2σ2s2Φ′′

(b,s)(ts))/2√
s
√

Φ′′(b,s)(ts)
2 + 1/σ4s4

ψ

(
ts − b

s

)
zx(ts) + r(b, s) (3.37)

where r depends on derivatives of a (resp. ϕ) of order up to two (resp. four).

The proof of the proposition may be found in Appendix B, together with more
precise details on the remainder. Notice that in the limit σ → ∞, one recovers
the previous expression (3.35). Notice also that the remainder is not uniform with
respect to scale, which means that the precision of the approximation depends upon
scale.

The approximate wavelet transforms in (3.35) and (3.37) are interesting in many
respects. Let us simply point out that they naturally lead to the introduction of
the following set of points

R = {(b, s) such that ts(b, s) = b} , (3.38)

termed the ridge of the wavelet transform. Indeed, if we forget for the sake of
simplicity about the denominator in (3.35), we can see that |Tx(b, s)|2 is locally
maximum in the neighborhood of the ridge (this follows from the assumptions on
the localization of the wavelet). In addition, it is readily verified that the ridge takes
the form of a curve in the time-scale plane

s = sr(b) =
ϕ′ψ(0)
ϕ′(b)

, (3.39)

where the argument ϕ (resp. ϕψ) of the signal (resp. the wavelet) is defined in (2.5)
(resp (3.34).) If the signal is locally monochromatic (see the discussion above), the
function sr(b) is monotonic and we may represent the ridge using the reciprocal
function b = br(s).

An example of such localization around a ridge is given in Fig. 5, in the particular
case of a power law chirp, as given in (2.5). In such a situation, the ridge takes the
form of a curve in the (b, s) half-plane, of equation

br(s) = t0 −

(
2πF0

ϕ′ψ(0)
s

)−1/β

, or sr(b) = F0(t0 − b)β , (3.40)

with s ∈ (0,∞) and b ∈ (−∞, t0).

gTaking advantage of the Gaussian amplitude.
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3.3. Line integrals detection

According to the previous expressions, the restriction of the wavelet transform to
the ridge (also termed skeleton of the wavelet transform8) has a particular status, in
the sense that its behavior is quite close to that of the analytic signal itself.8 To be
more specific, notice that with our assumptions on the wavelet ψ (namely, ψ is the
Morlet wavelet) we may write Φ′′(b,s)(t) = −ω0 s

′
r(t)/sr(t)

2. Using the stationary
phase approximation to Tx, it follows from equation (3.35) that

Tx(b, sr(b)) ≈
√

π

2ω0

√∣∣∣∣sr(b)s′r(b)

∣∣∣∣ e−iπ4 sgn(s′r(b)) ψ(0) zx(b) (3.41)

(a similar expression may be obtained using the approximation obtained in Propo-
sition 3.1). We now show how to take advantage of such expressions for constructing
a corresponding detection algorithm

Remark 3.1. Notice also that according to the same approximations, we have∫
|Tx(br(s), s)|2

ds

s
=
∫ ∣∣∣∣s′r(b)sr(b)

∣∣∣∣ |Tx(br(s), s)|2 db =
1
2
||x||2 (3.42)

We are interested in detecting the presence of a frequency modulated signal from
its wavelet transform. A now classical strategy 3,9 consists in seeking the “optimal
ridge”, i.e. the ridge which concentrates optimally the time-scale energy, within a
family of “candidate ridges.” Parametrizing ridges as functions of the scale variable
s, within a certain range [s0, s1],

s ∈ [s0, s1] → ρ(s) ,

one is led to seek the function ρ which maximizes

Γ[ρ] =
∫ s1

s0

|Tx(ρ(s), s)|2
ds

s
. (3.43)

In the general situation, we may write

Γ[ρ] ≈ C

∫ s1

s0

∣∣∣∣ψ(br(s)− ρ(s)
s

)∣∣∣∣2 |zx(br(s))|2(sr(ρ(s))s

)2
ds

|s′r(ρ(s))|

≈ C

∫ br(s0)

br(s1)

|zx(b)|2
∣∣∣∣ψ(b− λ(b)

sr(b)

)∣∣∣∣2(sr(λ(b))
sr(b)

)2 ∣∣∣∣ s′r(b)
s′r(λ(b))

∣∣∣∣ db ,
where we have introduced the auxiliary function

λ : b ∈ [b0, b1] → λ(b) = ρ(sr(b)) .

Introducing the other auxiliary function νr : b → νr(b) = ω0
sr(b)

(which may be
interpreted as instantaneous frequency), the latter expression reads

Ψ[ρ] ≈ C

∫ br(s0)

br(s1)

|zx(b)|2
∣∣∣∣ψ(νr(b)ω0

(b− λ(b))
)∣∣∣∣2 ∣∣∣∣ ν′r(b)

ν′r(λ(b))

∣∣∣∣ db . (3.44)
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Therefore, if the considered wavelet ψ is sufficiently localized around the origin
t = 0 so that ∣∣∣∣ψ(νr(b)ω0

(b− λ(b))
)∣∣∣∣2 ∣∣∣∣ ν′r(b)

ν′r(λ(b))

∣∣∣∣ ≤ |ψ(0)|2 ,

for all b ∈ [b0, b1], then

Γ[ρ] ≤ Γ[br] ,

and the numerical optimization of Γ will yield correct estimates for the seeked
ridge.3

The situation we consider here is slightly different, in two respects. First, we
have a parametric model at hand for the signal. Therefore, the space of potential
ridges is a finite dimensional space (a two-dimensional space in the case of power
law chirps). Second, the noise level is much higher than in the previously considered
non-parametric situations.3

In the case of power law chirps, the ridge function takes the form

s→ bt,F (s) = t−
(

2πF
ω0

s

)−1/β

(3.45)

(recall that ω0 is a constant). Thus, we are led to consider “energy” functions of
the form

Γ(t, F ) = Γ[bt,F ] , (3.46)

and seek maxima of such a two variables function with respect to t and F .

Remark 3.2. According to the stationary phase approximation (3.35), given a
candidate ridge ρ, we may write

|Tx(ρ(s), s)| ≈ CF0(s)
∣∣∣∣ψ(( ω0

sβ+1

)1/β

∆F − ∆t
s

)∣∣∣∣ .
Therefore, if we still assume that |ψ| is maximum at the origin, we see that this value
may be attained only if ∆t and ∆F have the same sign. Under such a condition, one
easily sees that the candidate ridge and the true ridge do intersect, which results
in significantly large values for the line integral. This is reminiscent of the result of
Proposition 3.1, and we shall see later on in the numerical simulations that the Γ
functions shows a behavior similar to (a somewhat blurred version of) the ambiguity
function A .

The statistical behavior of the line integrals is more difficult to understand. Un-
der the H0 hypothesis (noise only), the prewhitened wavelet transform of the signal
y analogous to an ordinary wavelet transform of a gaussian white noise. Hence,
all coefficients Wy(b, s) = WX(b, s) are also gaussian, and their square modulus
|Wy(b, s)|2 follow a centered χ2 distribution. The line integral is therefore a sum
of χ2 variables, but the latter being highly correlated, the distribution of the line
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integrals is very difficult to characterize precisely. The same holds true under the
H1 hypothesis: |Wy(b, s)|2 = |AWxθ (b, s) + WX(b, s)|2 is distributed according to an
uncentered χ2 distribution (i.e. as a sum of squares of uncentered Gaussians), and
the distribution of line integrals appears to be quite difficult to characterize (sum
of correlated centered or non-centered χ2 variables). Further work is clearly needed
at this point, maybe following the lines developed by Hory and collaborators. 13

4. Target application: detection of gravity waves

As target application, we consider the problem of detection/estimation of gravita-
tional waves at interferometric detectors. The existence of such waves was predicted
long ago23 by general relativity, but no direct observation could be done so far. High
scale experiments are currently being prepared, which should be able to provide
such direct observations. Among the potential sources for gravity waves, the waves
generated by coalescing binary star systems are particularly appealing, since the
corresponding waveform is fairly well-known, and may be given (to some approx-
imation degree) an explicit expression: in the so-called restricted post-Newtonian
approximation, a binary system of masses m1 and m2 (we denote by M the total
mass and by µ the reduced mass), coalescing at time t0 generates a chirp of the
form

x(t) = a(t) cos g(t) (4.47)

where the amplitude function is of the form

a(t) = A(t0 − t)−1/4

and the phase function reads

g(t) = φc −
2
η

[
(ηM(t0 − t))5/8 +

(
3517
8064

+
55
96
η

)
(ηM(t0 − t))3/8

−3π
4

(ηM(t0 − t))1/4 +
(

9275495
14450688

+
284875
258048

η +
1855
2048

η2

)
(ηM(t0 − t))1/8

]
,

with η = µ
M , and φc a constant representing the phase of the waveform at coales-

cence time. The amplitude constant A depends on the masses M and µ, and is also
inversely proportional to the distance at which the event took place. An example
of such a signal is displayed in Figure 1.

Such expressions result from asymptotic approximationsh, and it is sometimes
convenient to content oneself with the first order (i.e. Newtonian) approximation,
which features the same amplitude function, and a phase function of the form

g(t) = φc −
2
η

[
(ηM(t0 − t))5/8

]
,

hwhose accuracy has sometimes been questioned.
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Fig. 1. An example of power law chirp signal generated by the coalescence of a binary system.

which only depends on the parameter

M =
(
M2µ3

)1/5
,

called the chirp mass, rather than on M and µ independently. Such a model falls
in the class of the power law chirps we described above.

The considered detection problem is made significantly difficult because of the
presence of noise, with a very low signal to noise ratio. The noise is generally
considered Gaussian, zero mean and stationary, and the power spectral density is
assumed to be known. We shall work with a spectral density (corresponding to the
VIRGO2 experiment) of the form

SX(ν) = S1ν
−5 + S2ν

−1 + S3

(
1 +

( ν

500

)2
)

+ Sv(ν). (4.51)

The first terms represent pendulum thermal noise, mirror thermal noise and shot
noise respectively (the seismic noise has been neglected). The term Sv represents
the“violin modes” of the thermal noise (i.e. peaks in the spectrum), namely the
resonances of the various pieces of the detector, excited by thermal noise, and is
given by

Sv(ν) =
∞∑
n=1

1
ν

K

(ν2 − ν2
n)2 + φ2ν4

n

,

where K and φ are global constants. The numerical values of the constants depend
on physical parameters of the experiment. The simulations presented here have al-
ways been done with the same set of values, and violin modes have been suppressed.
The spectral density is shown in Fig. 2.

Remark 4.1. Because of the particular shape of the spectral density (which di-
verges as ν → 0 and ν →∞), the contribution of very low and very high frequencies
is negligible (which is fortunate, the physical meaning of such divergencies being
highly questionable). Therefore, it is legitimate to introduce infrared and ultraviolet
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Fig. 2. Model for the noise spectral density, taken from the VIRGO experiment (the “violin modes”

have been neglected.)

cutoffs in the numerical simulations. Also, the discussion regarding the integrability
of the function M becomes purely academic in such a context.

We applied the two detection strategies to the considered class of signals, for
various values of the parameters (star masses, distance,...). Gravitational signals
corresponding to Newtonian approximation (power law chirps) were generated, with
sampling frequency η = 2000Hz, and embedded into gaussian stationary coloured
noise with the prescribed spectral density (4.51) (for the sake of simplicity, the
violin modes have not been considered), with various values of the signal to noise
ratio (which corresponds to gravitational collapses taking place at various distances
from the detector). As mentioned in Remark 4.1, infrared and ultraviolet cutoffs
have been introduced. The results are presented below.

4.1. The cross-ambiguity function

We first consider the ambiguity function as defined in Definition 2.1, adapted to
the considered signal class.

Let us remark that thanks to the divergent behavior of the spectral density
SX at the origin and at infinity, the function M introduced in (2.16) is integrable.
Indeed, we have

‖M‖1 =
∫ +∞

0

ν
2α−β+1

β

SX(ν)
dν =

∫ +∞

0

ν−
7
3

S1ν−5 + S2ν−1 + S3

(
1 +

(
ν

500

)2) dν <∞ .

Therefore, the discussion of Section 2.3 applies. The considered numerical values
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Fig. 3. Two examples of generalized cross-ambiguity function, for the case of power-law chirps

corresponding to gravity waves in the Newtonian approximation: m1 = m2 = 10M� (left) and
m1 = m2 = 1.4M� (right).

of α and β yield the following approximate behavior for the peak value of the
ambiguity function:∣∣A(t0,F0)(t, F )

∣∣ ≤ 8
3
F
−4/3
0

∫ ∞

0

ν−7/3

SX(ν)
dν = CF

−4/3
0 . (4.53)

Numerical simulations (not presented here) confirm such predictions. This provides
a simple way to normalize the ambiguity function

Furthermore, Proposition 2.4 leads us to expect significantly different behaviors
for the ambiguity function, depending on the relative sign of ∆t and ∆F . Such a
behavior may be seen explicitely in the two illustrations of Figure 3, which represent
the A function (displayed in gray levels) versus the time parameter t and the mass
parameter m2 (or the frequency parameter F ), in two situations: m1 = m2 =
10M� (left) and m1 = m2 = 1.4M� (right). In both cases, the parameter space is
clearly divided into four quadrants, the boundaries of which correspond essentially
to the correct values of parameters. It may be seen that the left bottom and right
top quadrants correspond to situations where ∆t and ∆F have equal sign, which
manifests itself by higher values of the ambiguity function. Conversely, the left top
and right bottom quadrants correspond to situations where ∆t/∆F < 0, and the
absence of stationary point in the argument of the integrand of A yields significantly
smaller values.

The same may be seen on the slices of the ambiguity function (m1 = m2 =
10M�) displayed in Figure 4. Both slices display a significantly assymetric behavior;
the decay appears to be much faster when ∆t and ∆F do not have equal signs.

The ambiguity functions exhibit a sharp peak precisely at the point t =
t0, F = F0. This remark is the main point for the ambiguity function-based de-
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Fig. 4. Slices of the ambiguity function A corresponding to the situation m1 = m2 = 10M�. Left:

fixed F slice for three different values of F : ∆F ≈ 0 (top), ∆F > 0 (middle top) and ∆F < 0
(middle bottom); the fourth plot is a superimposition of the other three. Right: fixed t slice for
three different values of t: ∆t ≈ 0 (top), ∆t > 0 (middle top) and ∆t < 0 (middle bottom).

tection/estimation algorithm.

Remark 4.2. Additional numerical simulations (still in the absence of noise, not
displayed here) have shown that the precision in the determination of the parame-
ters t0 and F0 is quite good (relative errors less than one percent). Clearly, such a
precision depends highly on the sampling of the parameter space. In our numerical
experiments, we have used a sampling rate equal to the signal’s sampling rate for
the t parameter, and a (non-uniform) sampling of the F parameter. All together,
it seems that approximately one thousand of different values of F are necessary to
reach a correct precision.

Remark 4.3. At this point, it is worth coming back to the different models for
gravity waves. We have essentially used here the Newtonian model, in which the
masses parameters only appear through F . More realistic (post Newtonian) mod-
els take masses into account, and the (m1,m2) space has to be sampled, rather
than the F space. This results in a much larger number of parameters to examine,
and therefore to a much more complex algorithm. Hierarchical methods have been
proposed to circumvent this problem: a first rough estimate is followed by a more
refined one, in the neighborhood of the parameters estimated by the first step. A
possible idea could also be that the first step could be performed using wavelet line
integrals.19 This method is discussed below.
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Fig. 5. Pre-whitened wavelet transforms of pure (left) and noisy (right) power law chirps. m1 =

m2 = 10M�. The horizontal variable is the time variable, and the vertical one is the scale variable.
Square modulus of the wavelet transform is encoded with gray levels.

4.2. Wavelet transform line integrals

We now consider the approach based upon ridge detection from pre-whitened
wavelet transform. As stressed in Remark 4.3, the wavelet transform line integral
method may be considered as a possible first step for detecting the presence of
signal, even in situations where the signal is not completely matched to the model.

Remark 4.4. We shall use here the localization properties of the pre-whitened
wavelet transform of power law chirp signals near corresponding ridges. Such lo-
calization properties have only been established in the case of the ordinary wavelet
transform. However, the prewhitened wavelet transform Wx of a signal x is nothing
but the ordinary wavelet transform of C

−1/2
X x. Therefore, it may be seen that if

the function 1/SX is smooth enough, in the domain of the time-scale half-plane in
which the ridge approximations are correct, the property of localization near the
ridge is preserved.

The localization properties of the (pre-whitened) wavelet transform of power law
chirps is illustrated in Fig. 5, where the prewhitened transforms of a pure power-law
chirp and a noisy one are displayed. The localization properties appear clearly in
the pure case (left image), while the presence of noise seems to corrupt completely
the transform of the signal in the noisy case.

However, detection is still possible in such situations, as illustrated by Fig. 6:
the line integral function Γ (represented with gray levels, as a function of the t and
F variables) exhibits a well defined maximum in the neighborhood of the correct
values t = t0, F = F0.

As stressed before, the objective of the line integral function Γ is to provide a
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Fig. 6. Line integral for the noisy wavelet transform displayed in Figure 5 (right image).

robust alternative to the ambiguity function A , at the price of a performance loss.
Such a behavior appears clearly in Figures 7 and 8 (to be compared with Figures 3
and 4, which correspond to the same parameter values; notice however that in 8,
the values of ∆F in the left hand figure have been taken much larger than in Fig-
ure 4; with the same ∆F as in 4, the curves would have been undistinguishable): the
variations of the line integral function are much slower than those of the ambiguity
function. More precisely, variations with respect to the time parameter t are com-
parable, while the variations with respect to the frequency parameter F are much
slower. This is precisely one of the goals of this approach. Slower variations imply
that it is not necessary any more to sample densely the Γ function (as was the case
for the A function), which results in smaller computational burden. As a matter
of comparison with the ambiguity function approach, let us point out that in this
case, the number of values of F to consider in order to get an accurate estimate
of the true value was less than 100, instead of a thousand or so in the ambiguity
function approach.

4.3. Detection/estimation

The numerical results on generalized cross-ambiguity functions and wavelet trans-
form line integrals in the absence of noise, presented in the Sections 4.2 and 4.1,
show the main features of the two approaches. The generalized ambiguity functions
essentially feature much faster variations, and therefore a very significant peak at
values of the parameters coinciding with the values of the signal. On the other
hand, the wavelet transform line integral varies more slowly, and therefore may be
expected to provide more robust estimates for the parameters, at least within a
certain range of values of the signal to noise ratio.

In order to test the performances of the detector, simulations were run for
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Fig. 7. Gray levels representation of the ridge detector, in the neighborhood of the correct values

(t0, F0) = (30, 76.10) [m0
1 = 10M�, m0

2 = 1.4M�].
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Fig. 8. Slices from the ridge detector Γ(t, F ). Left: fixed F slices in three situations : ∆F = 0
(top), ∆F > 0 (middle), ∆F < 0 (bottom).

Right: fixed t slices in three situations : ∆t = 0 (top), ∆t > 0 (middle), ∆t < 0
(bottom); the fourth figure is a superimposition of the other three.

various values of the masses and distance parameters (hence various values of the
SNR), and the two approaches were used. For short, we will denote by A detector
the detector based on ambiguity functions, and by R detector the detector based
upon wavelet transform ridges. We present here the following comparisons. For
a given configuration (masses and distance), the A detector was used first, with
several values for the detection threshold, and false alarm and missed detections
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were recorded for all values of the threshold. For the sake of comparison, two versions
for the A detectors were considered: a finely sampled one Af (881 different values
of F ) and a coarser one Ac (160 different values of F .)

Then the R detector was used, with values of the threshold corresponding to
the same false alarm rates as with the ambiguity function detector. The number of
different values of F was set to 160 (i.e. the same number as the coarsely sampled
detector Ac.)

Three configurations were tested: m1 = m2 = 1.4M� (corresponding to F0 ≈
133.47), for three values of the distance R, m1 = 1.4M�,m2 = 10M� (i.e. F0 ≈
76.10), for two different values of R, and m1 = m2 = 10M� (i.e. F0 ≈ 39.06), for
three different values of R). In each situation, three different values of thresholds
were considered, corresponding to 1, 2 and 3 false alarms per second respectively.
The number of detections and missed detections was recorded in all situations.

The results obtained in these configurations are displayed in Table 1. As ex-
pected, the best results are generally obtained using the finely sampled detector
Af . Nevertheless, in the third situation, no significant difference between Ac and
Af may be seen: in this range of values of F0, the sampling of F could presumably
be made even coarser without much damage.

The comparison between the coarsely sampled A detector and the R detector
does not seem to lead to definite conclusions, in the sense that none of the two ap-
proaches may be considered better than the other in all situations. For small values
of the masses (i.e. high frequency signals), the ridge detector R seems to outperform
the coarsely sampled ambiguity function detector Ac. However, for larger values of
the mass parameters, this behavior tends to disappear. Since we lack a precise
statistical decision theory for ridge detectors, it is difficult to provide simple expla-
nations for such a behavior. Nevertheless, let us mention that the approximations
we have made concerning the oscillatory integrals defining the wavelet transform
seems to be fairly precise in the frequency region around 100 Hz; this could be
a (partial) explanation for the appropriateness of the R detection scheme in that
region.

5. Conclusions

We have studied in this paper two different approaches for the detection/estimation
of power law chirps embedded into stationary random noise: the classical matched
filter based approach, and an alternative based upon wavelet transform line
integrals.12 We have shown that the latter may be seen as a “blurred” version
of the former, in the sense that it provides a suboptimal alternative, which turns
out to be more robust and probably more efficient from a computational point of
view. An additional difficulty is introduced when it comes to the development of
a corresponding decision theory. While the detection theory corresponding to am-
biguity function (in other words, matched filters banks) is fairly well understood,
some extra work is required to develop a corresponding theory for line integrals
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Masses Distance False alarms Detections Detections Detections

(in M�) (per second) R detector Ac detector Af detector

1 100 55 100

R = 10 Mpc 2 100 65 100

SNR = 13.1 3 100 70 100

m1 = 1.4 1 57 25 100

m2 = 1.4 R = 15Mpc 2 67 30 100

SNR = 8.74 3 79 45 100

1 12 15 96

R = 20 Mpc 2 22 18 97

SNR = 6.55 3 34 23 98

1 70 95 100

R = 45 Mpc 2 76 97 100

m1 = 10 SNR = 6.77 3 81 99 100

m2 = 1.4 1 24 55 96

R = 60 Mpc 2 28 60 97

SNR = 5.08 3 34 66 98

1 83 99 99

R = 145 Mpc 2 86 99 99

SNR = 5.18 3 87 99 99

1 65 97 98

m1 = 10 R = 150 Mpc 2 73 99 99

m2 = 10 SNR = 5.00 3 77 99 99

1 60 97 97

R = 160 Mpc 2 67 98 98

SNR = 4.69 3 69 99 99

Table 1. Results of simulations using the three detection schemes: coarse and fine ambiguity func-

tion detectors Ac and Af , and wavelet ridge detection R. The indicated value of SNR corresponds
to the optimal signal to noise ratio for ambiguity function detection scheme. The last three columns
give the number of detections (out of 100 possible), when the threshold is set so as to yield a fixed

false alarm rate (given in the third column.)

(recall that the latter are constructed as sums of very correlated uncentered χ2

variables). This point is an important extension of the current work, which we
plan to investigate in the future. Another possible extension of this work concerns
the use of reassigned wavelet transforms7,9,14 instead of the wavelet transform, for
optimizing the time-frequency localization, as proposed by Chassande-Mottin and
Flandrin. 5

From the point of view of the gravity waves detection, our results seem to
indicate that wavelet transform line integrals could be considered an interesting al-
ternative approach for online analysis of experimental signal. It appears to compare
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well with sparsely sampled matched filter banks (ambiguity functions), at least in
some domains of values of the parameters. The suboptimality of the approach comes
together with an increased robustness, which allows subsampling of the parameter
space. In addition, such approaches should be much less sensitive to possible depar-
tures of the true signals from the restricted post Newtonian approximations which
are used by cosmologists. This is another point which we plan to study in the fu-
ture. However, let us also point out that the simulations we have presented in this
paper are based on a noise model with smooth spectral density (the assumption
is necessary in order to use stationary phase approximations on the prewhitened
wavelet transform). In particular, the “violin modes” of the detector noise (i.e. pe-
riodic components) have not been taken into account. Incorporating such violin
modes could result in a lowering of the performances of the algorithm.
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Appendix A. Proofs or Propositions 2.2 and 2.3, and Corollary 2.1

Let us start with the proof of Proposition 2.2. Consider a signal of the form
a(t) cos(ϕ(t)), and assume that the assumptions of Proposition 2.2 hold true. Then
it suffices to show that the Fourier transform of the function t → a(t)e−iϕ(t) is
bounded as in the proposition. To show this, let ν ∈ R+, and consider the integral

I =
∫ t2

t1

x(t)e−2iπνt dt ,

where the interval [t1, t2] is the support of a. By integrating by parts, and setting
ã(s) = ia(s)/(ϕ′(s)+2πν) (which is legitimate since ϕ′ is bounded from below and
ν > 0), we obtain (the first term cancels because of the support properties of a)

|I | =
∣∣∣∣∫ t2

t1

ã′(t)e−i(ϕ(t)+2πνt) dt

∣∣∣∣ ≤ ∫ t2

t1

∣∣∣∣ a′(t)
(ϕ′(t) + 2πν)

− a(t)ϕ′′(t)
(ϕ′(t) + 2πν)2

∣∣∣∣ dt
Therefore, we obtain

|I | ≤
∫ t2

t1

∣∣∣∣ a′(t)ϕ′(t)

∣∣∣∣ dt+
∫ t2

t1

∣∣∣∣a(t)ϕ′′(t)ϕ′(t)2

∣∣∣∣ dt ≤ ‖a‖1
(
‖a′‖1
‖a‖1

∥∥∥∥ 1
ϕ′

∥∥∥∥
∞

+
∥∥∥∥ ϕ′′

(ϕ′)2

∥∥∥∥
∞

)
,
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which yields the result. �

We shall also make use of the following results.
Lemma A.1 Let β ∈ C, =(β) > 0, and let A ∈ C2

0 . Then∫ ∞

−∞
A(t)eiβt

2
dt =

√
π

|β|
e−i arg(β)/2A(0) +R(β,A) , (A.1)

where

|R(β,A)| ≤ 5
4
‖A′′‖∞ .

The lemma is easily proved using a change of variables.11 The second result is
known as the stationary phase lemma, and results from Lemma A.1 above.
Lemma A.2 Let M ∈ C2

0 and f ∈ C5, and let ts be such that f ′(ts) = 0 and
f ′′(ts) 6= 0. Then∫ ∞

−∞
M(t)eif(t) dt =

√
2π

M(ts)√
|f ′′(ts)|

eiπsgn(f ′′(ts))/4 + r , (A.2)

where

|r| ≤ 5
√
π

4
‖B[f − f(ts),M ]‖∞ , (A.3)

the function B being defined as follows: for a ∈ C2 and g ∈ C5

B[g, a] =
(
|g|1/2

g′

)3{
a′′ − 3 a′

g′′g − 1
2 (g′)2

|g|3/2

√
|g|
g′

+ a

3

(
g(g′′)2 − 1

2 (g′)2

|g|3/2

√
|g|
g′

)2

−
g′′′g2 − 3

2g
′g′′g + 3

4 (g′)3

|g|5/2

√
|g|
g′

}

Again, the proof follows from a suitable change of variable (namely, u(t) =
sgn(t)

√
(f(t)− f(ts))/f ′′(ts)) and the use of Lemma A.1. The estimation of the

remainder results from lenghty but fairly simple calculations.11 �

We now turn to the proof of proposition 2.3. The assumptions make it possible to
apply directly the stationary phase lemma. For a given ν, the stationary points are
solutions of ϕ′(ts(ν)) = 2πν. The monotonicity of ϕ′ and the considered domain of
values of ν ensure existence and uniqueness of ts(ν). The stationary phase method
yields precisely the expression (2.10). For the remainder r, we have the following
bound

|r(ν)| ≤ 5
√
π

4
‖B[f, a]‖∞ ,where f(t) = ϕ(t)− 2πνt . (A.4)

Controlling explicitely such bounds turns out to be quite difficult in practice. For
that reasons, one sometimes uses the evaluation of B(f, a) at the stationary point
ts instead of its sup norm to estimate the order of magnitude of the remainder. �



December 17, 2002 16:9 WSPC/WS-IJWMIP MT02

Consider now the special case of power law chirps. In such a situation, the
stationary point is explicitely given by

ts(ν) =
(
ν

F0

)1/β

,

and the leading term in Corollary 2.1 follows immediately. �
As mentioned above, an effective check of the validity of such approximations is

generally problematic, since it requires the evaluation of a sup norm. A substitute
amounts to replace the sup norm by the evaluation at the stationary point (i.e. the
evaluation of the next term in the asymptotic expansion). Letting I1 denote the
estimation of the x̂ provided by the stationary phase approximation, and I2 the
next nonzero term, it may be shown that∣∣∣∣I2I1

∣∣∣∣ ≈ Cα,β
F

( ν
F

)−(β+1)/β

.

We notice that the bound is uniform with respect to ν for β = −1, namely for
hyperbolically frequency modulated signals. We also notice that for the case of
gravity waves we consider as target application in this paper, we obtain a behavior
of the type I2/I1 ' ν5/3. Hence the validity domain of the approximation lies in
the low frequency region. This result has been obtained previously by Chassande-
Mottin and Flandrin 4,5.

Appendix B. Oscillatory integral approximations of continuous
wavelet transform: proof of Proposition 3.1

Let ψ denote the Morlet wavelet, and consider the following oscillatory integral:

Tx(b, s) =
1√
s

∫ ∞

−∞
a(t)e−(t−b)2/2σ2s2ei(ϕ(t)−ω0(t−b)/s dt

=
1√
s

∫ ∞

−∞
a(t)eiΦ(t)−(t−b)2/2σ2s2 dt .

Letting ts denote as usual a stationary point of Φ, and setting β = Φ′′(ts) + i/σ2s2

and

u(t)2 =
Φ(t)− Φ(ts) + i[(t− b)2 − (ts − b)2]/2σ2s2

β

we are led to an integral similar to the one considered in Lemma A.1 (the imaginary
part of β is indeed positive.) An argument similar to the stationary phase argument
yields the result. �
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