1,244 research outputs found

    Ordering intermetallic alloys by ion irradiation: a way to tailor magnetic media

    Full text link
    Combining He ion irradiation and thermal mobility below 600K, we both trigger and control the transformation from chemical disorder to order in thin films of an intermetallic ferromagnet (FePd). Kinetic Monte Carlo simulations show how the initial directional short range order determines order propagation. Magnetic ordering perpendicular to the film plane was achieved, promoting the initially weak magnetic anisotropy to the highest values known for FePd films. This post-growth treatment should find applications in ultrahigh density magnetic recording.Comment: 7 pages, 3 Figure

    Cooling Flow Star Formation and the Apparent Stellar Ages of Elliptical Galaxies

    Get PDF
    Observational constraints and theoretical arguments indicate that cooled interstellar gas in bright elliptical galaxies forms into a young stellar population throughout the region within the half-light radius. The young population has a bottom-heavy, but optically luminous IMF extending to 1 - 2 M_sun. When the colors and spectral features of this young population are combined with those of the underlying old stellar population, the apparent ages are significantly reduced, similar to the relatively young apparent ages observed in many ellipticals. Galactic mergers are not required to resupply young stars. The sensitivity of continuous star formation to L_B and L_x/L_B is likely to account for the observed spread in apparent ages among elliptical galaxies. Local star formation is accompanied by enhanced stellar H_beta equivalent widths, stronger optical emission lines, enhanced thermal X-ray emission and lower apparent temperatures in the hot gas. The young stars should cause M/L to vary with galactic radius, perturbing the fundamental plane occupied by the old stars.Comment: 6 pages with 2 figures; accepted by Astrophysical Journal Letter

    Low-energy quasiparticle excitations in dirty d-wave superconductors and the Bogoliubov-de Gennes kicked rotator

    Get PDF
    We investigate the quasiparticle density of states in disordered d-wave superconductors. By constructing a quantum map describing the quasiparticle dynamics in such a medium, we explore deviations of the density of states from its universal form (E\propto E), and show that additional low-energy quasiparticle states exist provided (i) the range of the impurity potential is much larger than the Fermi wavelength [allowing to use recently developed semiclassical methods]; (ii) classical trajectories exist along which the pair-potential changes sign; and (iii) the diffractive scattering length is longer than the superconducting coherence length. In the classically chaotic regime, universal random matrix theory behavior is restored by quantum dynamical diffraction which shifts the low energy states away from zero energy, and the quasiparticle density of states exhibits a linear pseudogap below an energy threshold EΔ0E^* \ll \Delta_0.Comment: 4 pages, 3 figures, RevTe

    Dephasing in sequential tunneling through a double-dot interferometer

    Get PDF
    We analyze dephasing in a model system where electrons tunnel sequentially through a symmetric interference setup consisting of two single-level quantum dots. Depending on the phase difference between the two tunneling paths, this may result in perfect destructive interference. However, if the dots are coupled to a bath, it may act as a which-way detector, leading to partial suppression of the phase-coherence and the reappearance of a finite tunneling current. In our approach, the tunneling is treated in leading order whereas coupling to the bath is kept to all orders (using P(E) theory). We discuss the influence of different bath spectra on the visibility of the interference pattern, including the distinction between "mere renormalization effects" and "true dephasing".Comment: 18 pages, 8 figures; For a tutorial introduction to dephasing see http://iff.physik.unibas.ch/~florian/dephasing/dephasing.htm

    Stellar Population Diagnostics of Elliptical Galaxy Formation

    Full text link
    Major progress has been achieved in recent years in mapping the properties of passively-evolving, early-type galaxies (ETG) from the local universe all the way to redshift ~2. Here, age and metallicity estimates for local cluster and field ETGs are reviewed as based on color-magnitude, color-sigma, and fundamental plane relations, as well as on spectral-line indices diagnostics. The results of applying the same tools at high redshifts are then discussed, and their consistency with the low-redshift results is assessed. Most low- as well as high-redshift (z~1) observations consistently indicate 1) a formation redshift z>~3 for the bulk of stars in cluster ETGs, with their counterparts in low-density environments being on average ~1-2 Gyr younger, i.e., formed at z>~1.5-2, 2) the duration of the major star formation phase anticorrelates with galaxy mass, and the oldest stellar populations are found in the most massive galaxies. With increasing redshift there is evidence for a decrease in the number density of ETGs, especially of the less massive ones, whereas existing data appear to suggest that most of the most-massive ETGs were already fully assembled at z~1. Beyond this redshift, the space density of ETGs starts dropping significantly, and as ETGs disappear, a population of massive, strongly clustered, starburst galaxies progressively becomes more and more prominent, which makes them the likely progenitors to ETGs.Comment: To appear on Annual Review of Astronomy & Astrophysics, Vol. 44 (2006). 46 pages with 16 figures. Replaced version includes updated references, few typos less, and replaces Fig. 11 and Fig. 16 which had been skrewed u

    The Messenger Sector of SUSY Flavour Models and Radiative Breaking of Flavour Universality

    Get PDF
    The flavour messenger sectors and their impact on the soft SUSY breaking terms are investigated in SUSY flavour models. In the case when the flavour scale M is below the SUSY breaking mediation scale M_S, the universality of soft terms, even if assumed at M_S, is radiatively broken. We estimate this effect in a broad class of models. In the CKM basis that effect gives flavour off-diagonal soft masses comparable to the tree-level estimate based on the flavour symmetry.Comment: 24 pages, 3 figures. v3: minor changes in the text, typos corrected, version accepted for publication in JHE

    Nucleon-induced reactions at intermediate energies: New data at 96 MeV and theoretical status

    Full text link
    Double-differential cross sections for light charged particle production (up to A=4) were measured in 96 MeV neutron-induced reactions, at TSL laboratory cyclotron in Uppsala (Sweden). Measurements for three targets, Fe, Pb, and U, were performed using two independent devices, SCANDAL and MEDLEY. The data were recorded with low energy thresholds and for a wide angular range (20-160 degrees). The normalization procedure used to extract the cross sections is based on the np elastic scattering reaction that we measured and for which we present experimental results. A good control of the systematic uncertainties affecting the results is achieved. Calculations using the exciton model are reported. Two different theoretical approches proposed to improve its predictive power regarding the complex particle emission are tested. The capabilities of each approach is illustrated by comparison with the 96 MeV data that we measured, and with other experimental results available in the literature.Comment: 21 pages, 28 figure

    Renormalization-group study of Anderson and Kondo impurities in gapless Fermi systems

    Full text link
    Thermodynamic properties are presented for four magnetic impurity models describing delocalized fermions scattering from a localized orbital at an energy-dependent rate Γ(ϵ)\Gamma(\epsilon) which vanishes precisely at the Fermi level, ϵ=0\epsilon = 0. Specifically, it is assumed that for small ϵ|\epsilon|, Γ(ϵ)ϵr\Gamma(\epsilon)\propto|\epsilon|^r with r>0r>0. The cases r=1r=1 and r=2r=2 describe dilute magnetic impurities in unconventional superconductors, ``flux phases'' of the two-dimensional electron gas, and zero-gap semiconductors. For the nondegenerate Anderson model, the depression of the low-energy scattering rate suppresses mixed valence in favor of local-moment behavior, and leads to a marked reduction in the exchange coupling on entry to the local-moment regime, with a consequent narrowing of the range of parameters within which the impurity spin becomes Kondo-screened. The relationship between the Anderson model and the exactly screened Kondo model with power-law exchange is examined. The intermediate-coupling fixed point identified in the latter model by Withoff and Fradkin (WF) has clear signatures in the thermodynamic properties and in the local magnetic response of the impurity. The underscreened, impurity-spin-one Kondo model and the overscreened, two-channel Kondo model both exhibit a conditionally stable intermediate-coupling fixed point in addition to unstable fixed points of the WF type. In all four models, the presence or absence of particle-hole symmetry plays a crucial role.Comment: 44 two-column REVTex pages, 31 epsf-embedded EPS figures. MINOR formatting changes. To appear in Phys. Rev.

    A −436C>A Polymorphism in the Human FAS Gene Promoter Associated with Severe Childhood Malaria

    Get PDF
    Human genetics and immune responses are considered to critically influence the outcome of malaria infections including life-threatening syndromes caused by Plasmodium falciparum. An important role in immune regulation is assigned to the apoptosis-signaling cell surface receptor CD95 (Fas, APO-1), encoded by the gene FAS. Here, a candidate-gene association study including variant discovery at the FAS gene locus was carried out in a case-control group comprising 1,195 pediatric cases of severe falciparum malaria and 769 unaffected controls from a region highly endemic for malaria in Ghana, West Africa. We found the A allele of c.−436C>A (rs9658676) located in the promoter region of FAS to be significantly associated with protection from severe childhood malaria (odds ratio 0.71, 95% confidence interval 0.58–0.88, pempirical = 0.02) and confirmed this finding in a replication group of 1,412 additional severe malaria cases and 2,659 community controls from the same geographic area. The combined analysis resulted in an odds ratio of 0.71 (95% confidence interval 0.62–0.80, p = 1.8×10−7, n = 6035). The association applied to c.−436AA homozygotes (odds ratio 0.47, 95% confidence interval 0.36–0.60) and to a lesser extent to c.−436AC heterozygotes (odds ratio 0.73, 95% confidence interval 0.63–0.84), and also to all phenotypic subgroups studied, including severe malaria anemia, cerebral malaria, and other malaria complications. Quantitative FACS analyses assessing CD95 surface expression of peripheral blood mononuclear cells of naïve donors showed a significantly higher proportion of CD69+CD95+ cells among persons homozygous for the protective A allele compared to AC heterozygotes and CC homozygotes, indicating a functional role of the associated CD95 variant, possibly in supporting lymphocyte apoptosis
    corecore