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Föhringer Ring 6, D-80805 München, Germany
bInstitute of Theoretical Physics, Faculty of Physics, University of Warsaw,
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1 Introduction

A common approach to explain the observed hierarchies in fermion masses and mixings is

in terms of flavour symmetries. The matter fields transform under the flavour symmetry,

which is spontaneously broken by the vacuum expectation values (vevs) of scalar fields that

we will call flavons in the following. Most Yukawa couplings are forbidden at the renor-

malisable level and only arise from higher-dimensional operators involving suitable powers

of the flavons as determined by the flavour symmetry [1]. The flavour hierarchies are then
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explained by small order parameters given by the ratio of flavon vev and the UV cutoff

scale. This scale itself remains undetermined and can in principle be as large as the Planck

scale. In case it is smaller, one can interpret this cutoff scale as the typical mass scale of

new degrees of freedom, the so-called “flavour messengers”. The dynamics of this sector

may have important impact on low-energy physics even if its characteristic scale is very

high. In this work we want to systematically analyse the structure of the messenger sector

and show that it can indeed have important consequences both for Yukawa couplings and

soft masses in the MSSM.

In the UV completion that contains the messenger sector, small fermion masses can

be thought to arise from small mixing of light fields either with heavy fermions or with

heavy scalars. In the first case, which has been studied extensively in refs. [2, 3], fermion

masses correspond to three light eigenvalues of a large mass matrix. In the second case,

light masses arise from small vevs of the heavy scalars. This latter case has received less

attention despite its structure is much simpler. Such scalar messengers are very suitable

to generate texture zeros in the Yukawa matrix [4], that is, the vanishing of certain entries

although allowed by the flavour symmetry.1

Independently of the kind of messengers, in general one needs many of them. Since

these fields carry SM quantum numbers, they contribute to the RG evolution of SM gauge

couplings. The requirement of maintaining perturbativity up to certain scale puts a lower

bound on the messenger masses as a function of their number. In this work we require

perturbative physics up to a very high scale of supersymmetry breaking mediation, the

Planck scale for Gravity Mediation or the Gauge Mediation scale. In consequence the

flavour messengers must be very heavy. Direct effects of their exchange are then strongly

suppressed,2 but, when the flavour messenger scale is lower than the SUSY breaking medi-

ation scale, they are relevant for the flavour dependence of the soft SUSY breaking terms.

This is because in the supersymmetric theories we are considering the soft SUSY breaking

terms are sensitive to any dynamics that couple to light fields.

One can distinguish tree-level effects on the soft mass terms, generated by integrating

out the flavour messengers and determined by the flavour symmetry alone [9], and radiative

effects summarised by the RG evolution between the SUSY breaking mediation scale MS

and flavour messenger scale M , with the flavour messengers included. The latter are

particularly interesting as they necessarily break flavour universality of soft terms, even if it

is assumed (or naturally present) as the initial condition at MS . We quantitatively estimate

these effects and show that they always give in the super-CKM basis flavour off-diagonal

terms in soft masses comparable (in their order of magnitude) to those one would obtain

at tree-level without assuming universality. Thus the evolution of the soft terms according

to the MFV hypothesis [10] from their initial universal values is possible only if M is larger

than MS . For Gravity Mediation, the flavour physics is then pushed to the Planck scale.

1More recently, some phenomenological consequences of the messenger sector have been discussed in [5, 6]

and in [7] where also heavy scalars have been employed.
2In models with a low fundamental cutoff one can take these fields down to low scale where they can

give rise to large flavour-changing effects which make such scenarios testable at experiments [8].
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Figure 1. Schematic supergraph for Fermion UVC.

The structure of our paper is as follows: In section 2 we first discuss the general

structure of the messenger sector, in particular the two possibilities of UV completions

with heavy fermions and heavy scalars, respectively. This allows us to estimate the typical

number of messengers that we use in section 3 to calculate the bounds on the messenger

scale from perturbativity. In section 4 we discuss the impact of the messenger sector on

the flavour structure of soft terms. In particular we present constraints on light rotation

angles valid in large classes of flavour models. We finally conclude in section 5. In the

appendix we provide explicit examples of UV completions of three popular flavour models

in the literature in order to illustrate our general discussion.

2 The structure of the messenger sector

We want to consider models with a general flavour symmetry group GF spontaneously

broken by the vevs of the flavon superfields φI . The MSSM Yukawa couplings arise from

higher-dimensional GF invariant operators involving the flavons

Wyuk = yUijqiu
c
jhu + yDij qid

c
jhd yU,Dij ∼

∏
I

(
〈φI〉
M

)nU,D
I,ij

, (2.1)

where the suppression scale M & 〈φI〉 is the typical scale of the flavour sector dynamics.

The coefficients of the effective operators are assumed to be O (1), so that Yukawa hierar-

chies arise exclusively from the small order parameters εI ≡ 〈φI〉/M . The transformation

properties of the MSSM fields and the flavons under GF are properly chosen, so that εI
together with their exponents nU,DI,ij reproduce the observed hierarchies of fermion masses

and mixings.

In order to UV-complete these models one has to “integrate in” heavy fields at the

scale M . These messenger fields are vectorlike and charged under GF . They couple to the

flavons and the light matter. In the fundamental theory they mix either with MSSM mat-

ter or Higgs fields (after flavour symmetry breaking). In the first case one has to introduce

chiral superfields (Q+Q, U +U, D+D) with the quantum numbers of the MSSM matter

fields (see figure 1).

In the second case one introduces chiral fields (H + H, S + S) with the quantum

numbers of the MSSM Higgs fields and RP -even gauge singlets, respectively (see figure 2).

We are now going to discuss in more detail these two possibilities, to which we refer

as “Fermion UV completion” (FUVC) and “Higgs UV completion” (HUVC). Although we
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Figure 2. Schematic supergraph for Higgs UVC.

restrict to the pure cases, a UV completion involving both kind of fields is also viable. Such

a case is a straightforward generalisation of the following discussion.

2.1 UV completion with heavy fermions

In order to UV-complete the effective theory above with fermionic messengers, one has to

introduce certain numbers of vector-like superfields with light fermion quantum numbers

Qα +Qα Uα + Uα Dα +Dα,

with superpotential interactions of the schematic form

W ⊃MQQαQα +MUUαUα + φI
(
QαQβ + UαUβ

)
+ φI

(
Qαqi + Uαu

c
i

)
+ hu (QαUβ +Qαu

c
i + qiUα) , (2.2)

where we restricted to the up-sector for simplicity. Moreover we have dropped all couplings

that are assumed to be O (1), since all hierarchies should arise from the symmetry breaking

alone (which also implies MQ ∼MU ∼M).

The allowed couplings follow directly from the transformation properties of the mes-

sengers under GF . They have to be chosen appropriately, such that the effective Yukawa

couplings in eq. (2.1) are generated upon integrating out the messengers. This choice can

be conveniently carried out by drawing tree-level Feynman diagrams, see figure 1, in which

a given Yukawa entry yUij is induced by the interactions in eq. (2.2) with the number of

flavon insertions given by nUij in eq. (2.1). The diagram dictates the required messenger

couplings and therefore their GF quantum numbers. In the following, we are going to refer

to these diagrams as “chain” diagrams, for which we introduce the shorthand notation:

qi−Q1−. . .−QnQ−UnU−. . .−U1−ucj . (2.3)

Notice that for generating a Yukawa entry with a given number of flavon insertions one

can write several chain diagrams using different messengers. This ambiguity arises from

the possible permutations of the Higgs and flavon insertions in figure 1. For instance, one

can choose the position of the Higgs insertion, which corresponds to the number of “left-

handed” (Q) and “right-handed” (U,D) messengers one wants to use. In particular it is

possible to use only left-handed or right-handed messengers.

All entries of the light Yukawas can then be generated using the chain diagrams. To be

economic one can use the same messengers for different chains, but one has to pay attention

– 4 –
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that the resulting Yukawa matrix has full rank, which might not be the case because of pos-

sible correlations of different entries. An elegant and simple way to find the minimal number

(meaning minimal number of SM representations) of messengers needed in each sector was

pointed out in ref. [2]. In the full theory the role of the messenger couplings in eq. (2.2) is to

generate three light eigenvalues of the full mass matrix that involves the chiral fields and the

vectorlike messengers. Since the heavy eigenvalues are O (M), the determinant of the full

mass matrix must be equal to the determinant of the light mass matrix, up to powers of M :

detMu,d
full ∝ detmu,d

light ∝
∏
I

φnI
I v

3
u,d. (2.4)

Because every entry of the full mass matrix involves at most one power of φI , one needs

at least Nmin messengers with

Nmin =
∑
I

nI . (2.5)

That is, the minimum number of messengers can be found simply by counting the powers

of εI in the determinant of the Yukawa matrix.

Although this argument gives the minimal number of messengers, it is unclear which

messengers have to be included. We therefore outline a simple, model-independent, pro-

cedure to derive minimal sets of fermionic messengers for each sector. One first identifies

the three entries of the effective Yukawa matrix that gives the leading order contribution

to the determinant. If the leading order determinant is the sum of several terms one can

choose any of the summands. Then one constructs the chain diagrams for the three chosen

entries using different messengers for different entries, even if they have the same quantum

numbers. In this way one adds a total number of messengers that is precisely Nmin. Usually

there are several solutions obtained from permuting the Higgs and flavon insertions in each

diagram. By counting the total number of these permutations for each of the three entries

one can easily find the total number of possible UV completions with minimal number of

fermionic messengers. In appendix A we explicitly construct the Fermion messenger sector

for three examples in order to illustrate the general procedure.

The above method guarantees that the resulting Yukawa matrices are full-rank, i.e. all

fermion masses are generated. In general it does not ensure that other Yukawa entries

besides the three chosen, and therefore the correct mixings, are generated as well. However,

we checked that this is the case for the three example models of appendix A.

Finally we want to elucidate the necessity of using different messengers for different

entries. Let us assume that two Yukawa entries yUmn, yUrs (m 6= r, n 6= s), contribute at

leading order to the determinant and arise from chains that share a messenger. One can

then integrate out all messengers but this one. The superpotential of eq. (2.2) reduces to

the following form:

Weff ⊃MQQQ+ αiφQqi + βjhuQu
c
j for i = m, r j = n, s, (2.6)

where αm,r and βn,s are some effective couplings involving appropriate powers of εI . By

integrating out the last messenger Q+Q one clearly obtains a rank 1 matrix (see the dia-

gram of figure 3). One can avoid this by introducing a copy of Q+Q, i.e. a new messenger

– 5 –
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Figure 3. Diagram corresponding to eq. (2.6).

Q′ +Q
′

with the same quantum numbers as Q+Q. This gives rise to a new contribution

to the effective superpotential

∆Weff ⊃MQ′Q
′
Q′ + α′iφQ

′
qi + β′jhuQ

′ucj for i = m, r j = n, s, (2.7)

which ensures that the effective Yukawa matrix for (qm, qr) and (ucn, u
c
s) has rank 2.

2.2 UV completion with heavy scalars

We now discuss the UV completion of flavour models with heavy Higgs fields. In general

one has to introduce certain numbers of vector-like superfields

Hα +Hα Sα + Sα

where H has the SM quantum number of hu and S is a gauge singlet. The superpotential

interactions are of the schematic form

W ⊃MHHαHα +MSSαSα + φI
(
HβHα + SβSα + SαφJ

)
+HαSβhu +HαφIhu + qiu

c
jHα (2.8)

Again we dropped all couplings that are assumed to be O (1) and take MH ∼ MS ∼ M .

The required couplings and therefore the transformation properties of the messengers under

GF can be inferred from chain diagrams like in figure 2. Note that for generating all

Yukawa entries, in general corresponding to different charges, one needs different3 Higgs

fields coupling to qiu
c
j for each i, j. For generating a Yukawa entry in general one can write

several diagram with different messengers, corresponding to the possible permutations of

Higgs and flavon insertion in figure 2. In particular, it is possible to use only H messengers

and avoid gauge singlets. Explicit examples with HUVC can be found in appendix A.

In the fundamental theory, small fermion masses arise from small vevs of the H mes-

sengers. These vevs can be calculated by setting the messenger F-terms to zero and using

the MSSM Higgs vev 〈hu〉 as a background value. Solving the F-term equations

∂W/∂Hα = ∂W/∂Hα = ∂W/∂Sα = ∂W/∂Sα = 0 , (2.9)

3In non-abelian models these fields can be part of the same multiplet.

– 6 –
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is then equivalent to integrating out the messengers by their SUSY equations of motion.

This is analogous to the supersymmetric type-II see-saw [11], where integrating out the

heavy triplet or computing the vev of its scalar component are two equivalent ways to

compute the effective neutrino masses. Notice that the interpretation of small fermion

masses in the fundamental theory is much easier for the Higgs UVC, since the calculation

is formally the same as in the effective theory, while in the fermion messenger case one

would have to diagonalise huge mass matrices.

This feature of HUVCs allows to enforce texture zeros in the Yukawa matrices in a very

simple way. Although a certain Yukawa entry would be allowed by the flavour symmetry,

one can set it to zero because of particular dynamics in the messenger sector. From figure 2

it is clear that a specific Yukawa entry can only arise if the corresponding coupling to a

heavy Higgs is present. If such a Higgs with the correct transformation properties under

GF is missing, the entry vanishes in the fundamental theory and remains zero in the low-

energy effective theory. This elegant possibility to produce texture zeros has been already

outlined in [4]. In appendix A we illustrate this for the case of a U(1) flavour model.

3 Constraints from perturbativity and unification

As we have seen, the strongly hierarchical pattern of fermion masses requires a large number

of messengers with SM quantum numbers. These fields have a strong impact on the running

of the SM gauge couplings, so that for a given messenger sector the messenger mass scale

cannot be too far below the cutoff scale in order to avoid Landau poles. If the messengers are

coloured (as in the case of FUVC), the strongest constraint typically arises from the running

of α3 which is sizable already at MZ . In the case of HUVC, instead the bound is set by α2

and is usually weaker than in the previous case. Moreover some heavy Higgs fields can be

replaced by heavy singlets with no impact on running of the gauge couplings. Therefore one

can expect that models with HUVC will be less constrained than FUVC models regarding

the bounds from perturbativity of gauge couplings. Similarly, the messenger Lagrangian

contains many couplings which are O (1) and one has to ensure that they do not blow

up in the running between the messenger scale and the cutoff. Further constraints on the

messenger sector finally arise when one requires that the approximate unification of gauge

couplings in the MSSM is not spoiled. This is easily ensured if the messenger fields from

complete SU(5) multiplets. We are now going to discuss these issues in more detail.

3.1 Perturbativity of the gauge couplings

We want to calculate the constraints on the messenger scale for a given UV completion

with N3 vector-like SU(3)c triplet messengers and N2 vectorlike SU(2) doublet messengers

living at a scale M . Above M the 1-loop β-function coefficients bi of the gauge couplings

αi get modified according to

bi = b0i + ∆bi = b0i +Ni, (3.1)

where b0i are the MSSM coefficients (b03, b
0
2) = (−3, 1). Requiring that αi remains in the

perturbative regime (αi . 4π) up to the cutoff scale Λ provides a lower bound on the

– 7 –
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Figure 4. Contour plot of the lower bound on the messenger scale Mmin for given ∆b3 (left), ∆b2
(right) requiring perturbativity up to the cutoff scale Λ (obtained using eq. (3.2)).

messenger scale M given by

M &Mmin = Λ exp

[
− 2π

∆bi

(
1

αi(MZ)
− b0i

2π
log

Λ

MZ

)]
, (3.2)

where we considered 1-loop running and neglected the SUSY thresholds. Figure 4 shows

the contours of the lower bound on the messenger scale Mmin for ∆b3 (left), ∆b2 (right)

and the cutoff Λ. Comparing the two panels, one can see that the bound is indeed stronger

if the messengers are coloured.

In the case of a FUVC, one can get, for a given effective model, the minimal number

of triplets directly from eq. (2.5). Taking into account both up- and down sector one has

N3 = Nu
min + Nd

min, provided that only right-handed messengers are used in both sectors.

If also left-handed messengers are used, in general the number of triplets is larger, unless

both isospin components of the quark doublet serve as messengers. In turn, one can use

the perturbativity bound as a criterion for defining the “minimal” fermionic messenger

sector as the solution with the least number of color triplets, i.e. the messenger sector

least constrained by perturbativity. This notion can reduce drastically the degeneracy of

minimal messenger sectors since only few solutions efficiently unify up and down sectors.

The UV completions for the example models in the appendix are chosen to fulfil this

criterion of minimality, and can therefore be used to illustrate the minimal bounds on the

messenger scale for typical flavour models. We summarise the results in table 1.

It is interesting to notice that, despite the large number of additional fields charged

under the SM gauge group, a theory perturbative up to the Planck scale is still achievable

with a messenger sector living far below the GUT scale.

– 8 –
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Model FUVC HUVC

∆b3 Mmin ∆b2 Mmin

U(1) 19 1014 11 1012

U(1) × U(1)′ 8 109 11 1012

SU(3) 12 1012 6 107

Table 1. Comparison of HUVC and FUVC for the three example models in appendix A. Mmin

denotes the lower bound on M in GeV requiring perturbativity up to MPlanck.

3.2 Perturbativity of the O (1) couplings

The couplings in the messenger sector are by construction ∼ O (1), but they cannot be too

large if the theory should remain perturbative up to the cutoff Λ. One can easily estimate

the corresponding bounds considering the typical RGE of a generic superpotential coupling

λ. Let us consider for simplicity only the unavoidable contribution to the β-function that

is proportional to the third power of the coupling itself:4

(4π)2 d

dt
λ = Cλ3 . (3.3)

Here the coefficient C is given by group theoretical factors that depend on the quantum

numbers of the fields appearing in the coupling. For some typical couplings that appear in

the chains of figures 1 and 2 one finds:

λQαQβφ ⇒ C = 8

λUαUβφ ⇒ C = 5

λHI
uH

J
d φ ⇒ C = 4.

Requiring the absence of a Landau pole below the cutoff (i.e. 1/λ(Λ) > 0) gives an upper

bound on the value of the coupling at the messenger scale M :

λ(M) . λmax =

(
C

8π2
log

Λ

M

)−1/2

. (3.4)

One can get very conservative bounds considering a short running with Λ/M = 10. In this

case we find λmax = (2.9, 2.6, 2.1) for C = (4, 5, 8).

3.3 Unification

One might want to require that the apparent unification of the MSSM gauge couplings is

not spoiled by the presence of the messenger sector living at an intermediate scale. This in

general gives rise to additional constraints on the UV completion. As is well known, MSSM

unification is exactly preserved at 1-loop if the additional fields form complete multiplets of

4In general there will be other terms proportional to different Yukawas, of the kind λλ′ 2, that would

only make the bound stronger, and gauge terms, g2i λ, which are negligible in the large coupling regime we

are interested in, λ & 1.
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SU(5), independent of the scale where they live.5 Indeed the embedding of the messengers

in SU(5) multiplets is straightforward provided that the flavour symmetry commutes with

SU(5), i.e. the effective theory can be written in a SU(5) invariant way.

For FUVC one has now to write the chain diagrams with messengers transforming

as 10 + 10 and 5 + 5 of SU(5). This leads to a further reduction of the degeneracy of

messenger sectors that minimise perturbativity constraints. Indeed the UV completions

for the SU(5) compatible examples in the appendix are the unique solutions satisfying this

strong requirement.

For HUVC the Higgs messengers can be simply embedded in 5 + 5̄ representations.

In this case also the perturbativity bounds on α3 become relevant. Notice that the in-

troduction of new Higgs color triplets at the scale M potentially gives rise to additional

contributions to proton decay. While in general this might lead to new constraints on M ,

for the SU(5) compatible models in the appendix this is not the case. The reason is that

in these models any tree-level diagram which generates the dangerous dimension 5 proton

decay operators (qqq` and uude) via a chain of heavy Higgs triplets has to pass through

the ordinary coloured triplets associated with the light Higgs doublets. Therefore proton

decay is suppressed by the mass of these triplets together with small Yukawas precisely

as in ordinary SUSY GUTs. This means that the new triplets can be light as long as the

Higgs coloured triplets live at the GUT scale.

4 Constraints from SUSY-induced flavour violation

In the previous section we have shown that a flavour theory that remains perturbative up

to the Planck scale requires very heavy messengers, in the order of M = 1010 GeV. This

implies that all direct effects at low energy can be neglected, since they are suppressed by

powers of M . However, in the MSSM even such high scales can have an important impact

on TeV scale physics due to the presence of light SUSY particles. Their soft masses are

determined by the underlying mechanism of SUSY breaking, and are usually generated at

very high scales as well. This means that the messenger sector can interfere with the SUSY

breaking sector. In particular the messenger sector strongly violates flavour universality

by construction, and therefore can easily induce flavour violation in the sfermion masses

with drastic consequences for low-energy observables.6

4.1 Tree-level effects

A common approach in the literature is to assume high-scale SUSY breaking like Gravity

Mediation and apply a spurion analysis to determine the structure of the sfermion mass

matrices below the messenger scale. If the messenger scale M is much below the SUSY

breaking scale MS , all flavour-violating effects in the soft terms arise dominantly from the

messenger sector (see e.g. [5]). This is because at the SUSY breaking scale flavour-violating

effects are suppressed by powers of φ/MS instead of φ/M and therefore are negligible. All

5For sets of fields that do not form complete SU(5) multiplets but still maintain MSSM unification, see

ref. [12].
6For a recent discussion see [13].
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soft mass terms for chiral fields and messengers are given in the flavour symmetric limit

and read schematically

K ⊃ X†X

M2
S

(
aiq
†
i qi + bαQ

†
αQα + ciαq

†
iQα + dβH

†
βHβ . . .

)
+O (φ/MS) , (4.1)

where we canonically normalised the fields, X denotes the SUSY breaking spurion and

Q,H denote Fermion and Higgs messengers, respectively.

In general integrating out the messenger fields generates the tree-level flavour structure

of the soft masses as expected by the flavour symmetry (controlled by powers of φ/M).

However this effective structure also depends on the details of the messenger sector and

the SUSY breaking mechanism. For example it is clear that for Higgs messengers no

off-diagonal sfermion mass terms can be generated in the flavour basis. Instead Fermion

messengers do mix with light fields and this mixing typically generates off-diagonal sfermion

masses. This is however not the case in Gauge Mediation where sfermion masses are uni-

versal among fields with same gauge quantum numbers (ai = bα, ciα = 0), and therefore

stay universal in every basis. Still, even in such cases flavour universality is broken by

radiative effects as we are going to discuss in the following.

4.2 Radiative effects

Let us assume a mechanism of SUSY breaking that generates universal sfermion masses

at the scale MS . This can be easily realised if the underlying dynamics is flavour-blind,

for instance in Gauge Mediation. If MS is below the flavour messenger scale M , the RG

running down to low energies approximately preserves universality, because it is broken only

by the Yukawa interactions that are small for the relevant transitions between 1st and 2nd

generation. If instead the SUSY breaking scale is above the messenger scale, universality is

spoiled by messenger loop corrections,7 since the interactions of sfermions and messengers

strongly violate SU(3)5
F . While in abelian flavour models this breaking is large, being

through O (1) couplings in the Lagrangian, in non-abelian models it is due to small flavon

vevs. Still, in simple non-abelian models [15–19] the 1-2 sector universality breaking can be

sizable (of the order of the Cabibbo angle squared) and in 1-3 and 2-3 sector even of O (1) .

The RG effects from the messenger sector destroy universality of sfermion masses in

two ways, by directly generating an off-diagonal entry and by splitting degenerate masses

on the diagonal that is then converted to an off-diagonal entry in the mass basis.8 As

we will see, the second contribution is always larger or equal than the first one for large

classes of flavour models. For such models one can therefore obtain constraints on the light

fermion rotations depending on the size of the diagonal splitting.

In this section we estimate these constraints for the case of abelian and simple non-

abelian flavour symmetries. The starting point is a universal sfermion mass matrix at the

7This effect has been discussed for a model with accidental flavour symmetries and Fermion messen-

gers [14].
8This is perfectly analogous to the RG induced flavour violation in SUSY seesaw [20] and SU(5) mod-

els [21, 22].
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SUSY scale MS where for simplicity we restrict to 1st and 2nd generation

m̃2
ij(MS) =

(
m̃2

0 0

0 m̃2
0

)
. (4.2)

When this mass matrix is evolved down to the scale M where the messengers decouple, all

entries receive corrections ∆m̃2
ij which are determined by the RG equations

m̃2
ij(M) =

(
m̃2

0 + ∆m̃2
11 ∆m̃2

12

∆m̃2
21 m̃2

0 + ∆m̃2
22

)
. (4.3)

The final evolution to the soft SUSY breaking scale scale is determined by gauge (thus

flavour universal) terms and by 1st and 2nd family MSSM Yukawa couplings that can be

neglected:

m̃2
ij(m̃) ≈ m̃2

ij(M) + δij CaM
2
a (M), (4.4)

where Ma are gaugino soft masses. The 1-2 entry in the super-CKM basis is then approx-

imately given by

m̃2
12 ≈ ∆m̃2

12 +
(
∆m̃2

22 −∆m̃2
11

)
θ12, (4.5)

where θ12 denotes the (complex) rotation angle in the sfermion sector under consideration.

For simple flavour models like U(1),U(1)2 or SU(3) it is easy to see the second term is

always larger or equal than the first one, provided the rotation angle does not vanish. For

example in a U(1) model one has for left-handed down squarks

∆m̃2
12 ∝ εq1−q2m̃2, ∆m̃2

22 −∆m̃2
11 ∝ m̃2, θ12 ∼

yD12

yD22

∝ εq1+d2

εq2+d2
= εq1−q2 , (4.6)

where qi, di denote the U(1) charge of the corresponding superfields. A non-abelian exam-

ple will be discussed below. As we shall see later m̃2 ≈ m̃2
0, that is the loop corrections

are of the same order as the tree-level effects. Therefore in the following we restrict our

attention on the second term in eq. (4.5). We neglect the possibility that the two terms

cancel since in general they involve different O (1) coefficients. In appendix B we illustrate

this issue in an explicit example.

The diagonal splitting ∆m̃2
22 − ∆m̃2

11 depends on the RG running that can be esti-

mated in the leading-log approximation. It depends on all interactions of sfermions and

messengers. Since these couplings are O (1) the RG coefficients are in general large. As a

conservative estimate we take for the total RG contribution a factor 10 into account (besides

the loop factor and the logarithm), a typical value one finds in concrete models (see ap-

pendix B). In abelian models there is no extra suppression, because 1st and 2nd generation

sfermions couple with different O (1) couplings to the messengers. Instead in non-abelian

models 1st and 2nd family sfermions can be embedded in the same representation under

the flavour group, which implies that their couplings to messengers are universal, except

for small symmetry breaking effects which lead to additional suppression. Such breaking
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Mass splitting Suppression factor in SU(3)F Suppression factor in U(2)F

∆U
13 O (1) O (1)

∆U
23 O (1) O (1)

∆U
12 ε4 ε4

∆D
13 ε3 tanβ O (1)

∆D
23 ε3 tanβ O (1)

∆D
12 ε5 tanβ ε5 tanβ

Table 2. Additional suppression factors of diagonal sfermion mass splittings ∆ij ≡ m̃2
ii − m̃2

jj in

simple non-abelian models.

is model dependent and can be even of the order ε2 in the 1-2 sector. To estimate the

additional suppression factor we consider the case of a generic SU(3) model with all quarks

transforming as a 3 and flavons as 3. The flavons get hierarchical vevs that induce the quark

masses. The flavon vev responsible for universality breaking in the i-j sector is therefore

roughly given by the square root of the Yukawa coupling
√
yjj . The situation is similar in

the case of some U(2)F flavour models [17, 18], where transitions in 1-3 and 2-3 sector are

always unsuppressed. We find that the additional suppression factor for the sfermion mass

splitting ∆ij ≡ m̃2
ii−m̃2

jj is given by yjj , as displayed in table 2. Let us finally illustrate that

also in the non-abelian case the second term in eq. (4.5) gives a good estimate for the total

contribution. Since we assume left-handed and right-handed superfields to form triplets of

the non-abelian symmetry, the generated ∆m̃2
12 and ∆m̃2

22−∆m̃2
11 are proportional to two

flavon insertions, like the Yukawa entries. For left-handed down squarks, we then have:

∆m̃2
12 . yD12 m̃

2, ∆m̃2
22 −∆m̃2

11 ∼ yD22 m̃
2, θ12 ∼

yD12

yD22

, (4.7)

where the inequality in the first expression accounts for the fact that additional symmetries

typically lead to a further suppression of soft masses with respect to the naively expected

size ∝ yD12. Note that such a suppression can occur only for off-diagonal sfermion masses.

From eq. (4.7), we then see that also in this case (∆m̃2
22 −∆m̃2

11)θ12 & ∆m̃2
12.

In summary, for the estimation of the mass splitting we consider the case of abelian

flavour symmetries, and keep in mind that in non-abelian models one can have additional

suppression. Still the abelian case can be relevant in non-abelian models for sfermions

transforming as singlets under GF , but possibly charged under additional U(1) factors

(e.g. [7, 23, 24]). We can then estimate the off-diagonal sfermion mass at leading log by:

m̃2
12 ≈

(
∆m̃2

22 −∆m̃2
11

)
θ12 ≈ θ12

m̃2
0

16π2
10 log

MS

M
. (4.8)

Note that this estimate is roughly of the same order as one would expect for a tree-level

sfermion mass matrix only constrained by the flavour symmetry. If the rotation angle does

not vanish, it gives the leading contribution to the off-diagonal entry in the super-CKM

basis. It only depends on the rotation angles, whereas the off-diagonal entry in the flavour
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(δDXX)12 9.2× 10−2 [Re] 1.2× 10−2 [Im]

〈δD12〉 1.9× 10−3 [Re] 2.6× 10−4 [Im]

(δDLR)12 5.6× 10−3 [Re] 7.4× 10−4 [Im]

(δUXX)12 1.0× 10−1 [Re] 6.0× 10−2 [Im]

〈δU12〉 6.2× 10−3 [Re] 4.0× 10−3 [Im]

(δULR)12 1.6× 10−2 [Re] 1.6× 10−2 [Im]

(δDXX)13 2.8× 10−1 [Re] 6.0× 10−1 [Im]

〈δD13〉 4.2× 10−2 [Re] 1.8× 10−2 [Im]

(δDLR)13 6.6× 10−2 [Re] 1.5× 10−1 [Im]

(δELL)12 2.8× 10−3 [5.7× 10−4]

(δERR)12 2.3× 10−2 [4.6× 10−3]

〈δE12〉 1.8× 10−3 [3.8× 10−4]

(δELR)12 1.7× 10−5 [3.4× 10−6]

Table 3. Bounds on flavour-violating mass-insertions. Here 〈δfij〉 ≡
√

(δfLL)ij(δ
f
RR)ij and X = L,R.

Values in [ ] denote expected future bounds. See the text for details.

basis depends directly on the specific flavour symmetry [9] and can be affected by the

messenger sector.

The corresponding mass insertion δ12 ≡ m̃2
12/
√
m̃2

11m̃
2
22 is then given by:

δab.
12 ≈

θ12

16π2
10 R log

MS

M
, (4.9)

where the factor R parameterizes the possible suppression due to the gaugino-driven run-

ning of the diagonal entries, cf. eq. (4.4). R is typically O (1) in the case of sleptons, while

for squarks it ranges from O (1) down to O (0.1) in the case of large high-energy gluino

mass, M3 � m̃0.

Similarly, radiative effects given by messenger loops will induce flavour-violating entries

in the A-term matrices in the super-CKM basis, even if they vanish at high energy or are

aligned to the corresponding Yukawas. Given that the flavour structures of the A-terms

and the Yukawas are the same, while their β-function coefficients differ by O (1) factors, the

radiatively generated LR mass-insertions, (δfLR)ij ≡ (Afmf )ij/m̃
2 can be estimated to be:

(δfLR)ij ≈
1

16π2
aijY

f
ij

v

m̃
log

MS

M
, (4.10)

where aij are O (1) coefficients, v is the EWSB vev and m̃ the low-energy squark/slepton

mass.

4.3 Numerical discussion

The expressions above can be compared to the various bounds on the mass insertions

obtained from FCNC and LFV processes. In table 3 we collected the quark sector con-

straints from the existing literature [25–27], for the following reference values of squark and
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rotation angle MS/M = 108 MS/M = 10

θDL12 , θDR12 7.9× 10−2 [Re] 1.0× 10−2 [Im] 6.3× 10−1 [Re] 8.2× 10−2 [Im]

〈θD12〉 1.6× 10−3 [Re] 2.2× 10−4 [Im] 1.3× 10−2 [Re] 1.8× 10−3 [Im]

θUL12 , θ
UR
12 8.6× 10−2 [Re] 5.1× 10−2 [Im] 6.9× 10−1 [Re] 4.1× 10−1 [Im]

〈θU12〉 5.3× 10−3 [Re] 3.4× 10−3 [Im] 4.3× 10−2 [Re] 2.7× 10−2 [Im]

θDL13 , θDR13 2.4× 10−1 [Re] 5.1× 10−1 [Im] -

〈θD13〉 3.6× 10−2 [Re] 1.5× 10−2 [Im] 2.9× 10−1 [Re] 1.2× 10−1 [Im]

θEL12 2.4× 10−3 [4.9× 10−4] 1.9× 10−2 [3.9× 10−3]

θER12 2.0× 10−2 [3.9× 10−3] 1.6× 10−1 [3.2× 10−2]

〈θE12〉 1.5× 10−3 [3.3× 10−4] 1.2× 10−2 [2.6× 10−3]

Table 4. Constraints on rotation angles in abelian flavour models, obtained using eq. (4.9)

with R = 1 and the bounds of table 3 (corresponding to mq̃ = 1 TeV). The angles without L,R

specification are the geometric mean of both, e.g. 〈θD12〉 ≡
√
θDL
12 θDR

12 . For the leptonic angles θE12
we show in brackets also the expected future bound provided that MEG will improve the limit on

BR(µ→ eγ) down to 10−13.

gluino masses: mq̃ = 1 TeV, mg̃/mq̃ = 1. For the leptonic sector we used the new exclu-

sion limit on µ → eγ from the MEG collaboration [28] to update the existing bounds on

(δELL)12, (δERR)12 and (δELR)12. We performed a random variation of the SUSY parameters

in the following ranges: m˜̀ = [100, 1000] GeV, M1 = [50, 500] GeV, M2 = [100, 1000] GeV,

µ = [100, 2000] GeV, tanβ = [5, 15]; then, we have taken as bound for a given mass-

insertion the value for which 90% of the points of the scan are excluded by BR(µ → eγ)

(which has been computed using the expressions in [29]). Doing like that, we neglected

cancellations among different contributions larger than roughly 10%.

Since the estimated effect in eq. (4.9) depends only on the rotation angle and the ratio

of SUSY and messenger scale, for a given ratio one obtains an upper bound on the real and

imaginary part of the rotation angle. This bound depends logarithmically on the ratio of

scales for which we consider the two extreme cases MS/M = 10 and MS/M = 108, which

in Gravity Mediation corresponds to messengers at M ≈ 1017 GeV and M ≈ 1010 GeV,

the latter representing the typical minimal value satisfying perturbativity constraints. The

results are summarised in table 4, for the case of an abelian flavour symmetry. Bounds for

non-abelian models can be obtained taking into account the additional suppression factors

provided in table 2.

This table can be used to estimate the constraints on the Yukawa matrix (valid up

to unknown O (1) coefficients) in a given SUSY breaking scenario. They are unavoidable

whenever the SUSY breaking scale is above the messenger scale MS > M , which includes

mSUGRA. As one can see, these bounds are quite strong although they hold for pretty

general flavour models. They put abelian flavour models in mSUGRA scenarios in trouble,

since at least either θUL12 or θDL12 must account for the Cabibbo angle, i.e. must beO (ε) ≈ 0.2.

In realistic models the constraints are even stronger, since typically they are compatible
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rotation angle U(1) SU(3)

θDL12 , θDR12 ε ε (ε3)

〈θD12〉 ε ε (ε3)

θUL12 , θ
UR
12 ε ε2 (ε6)

〈θU12〉 ε ε2 (ε6)

θDL13 ε3 ε3 (ε3)

θDR13 ε ε3 (ε3)

〈θD13〉 ε2 ε3 (ε3)

θEL12 , θ
ER
12 ε ε (ε3)

〈θE12〉 ε ε (ε3)

Table 5. Rotation angles for example models of the appendix A with ε ≈ 0.2. For the non-abelian

case we included in parentheses the total effective angle using the additional suppression factor in

table 2.

with SU(5), implying θUL ≈ θUR, θDL ≈ θER, θDR ≈ θEL. The constraints are less severe in

non-abelian models (that gives at least an additional suppression ∼ ε2 in the 1-2 sector), but

the small breaking of universality is partially compensated by the fact that in these models

fermion mass matrices are typically symmetric and therefore θL ∼ θR. Still, non-abelian

models are definitively preferred from what concerns the effect that we have discussed here.

As an illustration, we compare the obtained bounds with the rotation angles predicted

in the U(1) and SU(3) models of appendix A in table 5. For the leptonic rotation angles

we assumed the SU(5) relations θEL ≈ θDR, θER ≈ θDL. Comparing to the bounds given

in table 4, we see that the U(1) model (as any abelian model) is seriously challenged by

the 1-2 sector constraints. Even considering an additional suppression R = O (0.1) from

vanishing scalar masses at MS and small CPV phases, the bounds can be evaded only for

a quite heavy SUSY spectrum, mq̃ ' 2 TeV (notice that the bounds in table 4 scale like

mq̃/(1 TeV)). With this setup, the U(1) model should still exhibit sizable deviation from

the SM in K −K, D −D mixing, as well as a rate for µ → eγ in the reach of the MEG

experiment. On the other hand, the non-abelian example is still perfectly compatible with

the bounds. Notice however that large effects in SU(3) models for K− K̄ CP violation and

LFV are still possible, provided that the SUSY masses are not too heavy.9

5 Conclusions

In this paper, we have discussed the general features of the UV completions of SUSY flavour

models. We have analysed in detail the structure of the messenger sector of this kind of

models, which contains vector-like superfields that mix either with light fermions or with

light Higgs fields. In the latter case, it is particularly simple to obtain texture zeros in the

Yukawa matrices, just by removing certain messengers from the theory, without modifying

9The phenomenological implications of some SU(3) models have been recently discussed in [30, 31].
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the transformation properties of the SM fields. Our discussion on the structure of the mes-

senger sector does not rely on SUSY and can be easily generalised to non-supersymmetric

scenarios.

In general, the messenger sector contains many new fields charged under the SM

gauge group. As a consequence, requiring the theory to remain perturbative up to high-

energy scales forces the masses of the messengers to be far above the TeV scale, typically

O
(
1010

)
GeV for the example models we have considered. This implies that the mes-

sengers have no direct impact on low-energy observables. Still, their presence affects the

RG running of the sfermion masses. We have emphasised that the radiative generation

of sfermion mass-splittings and misaligned A-terms is unavoidable whenever the flavour

symmetry breaking scale is lower than the SUSY breaking scale, like in Gravity Mediation.

We have quantitatively estimated this RG effect and found it comparable to the tree-level

off-diagonal sfermion masses as expected by the flavour symmetry. Therefore the strong

flavour constraints cannot be evaded even under the assumption of universal soft terms.

These constraints depend only on the diagonal mass splitting and the rotation angles, and

therefore apply to large classes of flavour models. In table 4 we have provided bounds on

the rotation angles of the light fermions that are valid in any abelian flavour model and can

be easily extended to simple non-abelian models. We find that abelian models are strongly

constrained and hence it is difficult to marry them to Gravity Mediation with SUSY at the

TeV scale. Even though it is well-known that abelian models induce large flavour changing

effects, still we find it remarkable that this remains true even under the strong assumption

of universal soft masses at the SUSY breaking mediation scale, as a consequence of the pres-

ence of flavour messengers affecting the RG running. Not surprisingly, in non-abelian mod-

els the sfermion mass-splittings can be suppressed with respect to the abelian case by small

flavon vevs and ease the bounds on the rotation angles. However, large effects for Kaon

and LFV observables are still possible, provided that the SUSY spectrum is not too heavy.
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A Example models

In this appendix we explicitly construct the UV completions both with fermion and Higgs

messengers for three example models: U(1), U(1)×U(1)′ and SU(3).
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A.1 U(1)H

The first example is based on a U(1)H flavour symmetry. We take for the charges of the

MSSM superfields [34]:

q1,2,3 : (3, 2, 0)

uc1,2,3 : (3, 2, 0)

dc1,2,3 : (2, 1, 1), (A.1)

the Higgs fields are neutral and a single flavon is introduced with charge H(φ) = −1. This

gives rise to the effective Yukawa matrices:

Yu ∼


ε6 ε5 ε3

ε5 ε4 ε2

ε3 ε2 1

 Yd ∼


ε5 ε4 ε4

ε4 ε3 ε3

ε2 ε ε

 . (A.2)

The correct hierarchy of fermion masses and mixing can be achieved choosing the expansion

parameter of the order of the Cabibbo angle, ε ∼ 0.23.

A.1.1 Fermion UVC

The determinants of the Yukawas matrices in eq. (A.2) are

detYu ∼ ε
∑

iH(qi)+H(ui) = ε10 detYd ∼ ε
∑

iH(qi)+H(di) = ε9, (A.3)

where H(fi) is the charge of the fermion fi. According to eq. (2.5), one needs in total∑
iH(qi)+H(ui) = 10 messengers in the up-sector and

∑
iH(qi)+H(di) = 9 messengers in

the down-sector. All terms contributing to the determinant are of the same order (which is

true in every U(1) model). We can choose the term that is the product of the three diagonal

entries. These three entries are then generated from the chain diagrams. For the chains in

the up sector we choose (from the total number of possibilities10 that is 7× 5 = 35)

q1−Q2−Q1−Q0−U0−U1−U2−uc1 (A.4)

q2−Q′1−Q′0−U ′0−U ′1−uc2, (A.5)

where the messengers are labelled with their U(1) charges. Note that yU33 is present already

on the renormalisable level. For the down sector we choose (from 6×4×2 = 48 possibilities)

q1−Q2−Q1−Q0−D0−D1− dc1 (A.6)

q2−Q′1−Q′0−D′0−dc2 (A.7)

q3−D′′0−dc3. (A.8)

In total we have used 10 messengers in the up sector and 9 messengers in the down sector,

which is exactly the minimal number required.

10In the simple U(1) case, this multiplicity arises from permuting the position of the Higgs insertion in

each of the three chain diagrams.
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A.1.2 Higgs UVC

The charges of the heavy Higgs messengers can be easily inferred from the chain diagram of

figure 2, giving 6 messengers in the up sector and 5 in the down sector which are necessarily

distinct. Thus one has in total 11 Higgs messengers (plus conjugates) that we denote by

the charge of hu

H(x)
u +H

(x)
d x = −6,−5,−4,−3,−2,−1, 1, 2, 3, 4, 5. (A.9)

The relevant part of the superpotential is given by

W ⊃
∑
x

MxH
(x)
u H

(x)
d + λuij qiu

c
j H
−(H(qi)+H(uj))
u + λdij qid

c
j H

(H(qi)+H(dj))
d + (A.10)

+ φ
(
α6H

(−6)
d H(−5)

u + · · ·+ α1H
(−1)
d hu + α0hdH

(1)
u + α−1H

(1)
d H(2)

u + · · ·+ α−4H
(4)
d H(5)

u

)
,

where hu and hd are the MSSM Higgs fields. Taking Mx ∼ M , the resulting Yukawa

couplings for the up and the down sector are given by

Yu =


λu11α(1,6)ε

6 λu12α(1,5)ε
5 λu13α(1,3)ε

3

λu12α(1,5)ε
5 λu22α(1,4)ε

4 λu23α(1,2)ε
2

λu13α(1,3)ε
3 λu23α(1,2)ε

2 λu33

 (A.11)

Yd =


λd11α(−4,0)ε

5 λd12α(−3,0)ε
4 λd13α(−3,0)ε

4

λd21α(−3,0)ε
4 λd22α(−2,0)ε

3 λd23α(−2,0)ε
3

λd31α(−1,0)ε
2 λd32α(−1,0)ε λd33α0ε

 , (A.12)

with the shorthand notation

α(X,Y ) ≡
∏

x=X,X+1,...,Y

αx. (A.13)

Notice that in contrast to the fermion messenger case one does not have to add copies of

messengers, since in this case every entry comes with a different coupling λij which implies

full rank.

As explained in section 2.2, Higgs UV completions easily allow for the presence of

texture zeros in the Yukawas, simply by removing the corresponding Higgs messenger from

the theory (which however sets all Yukawas which the same charge to zero). But the

removal of a certain Higgs might interrupt the chain needed for other Yukawa entries. This

gap has then to be fixed by using additional singlet messengers.

As an example, we consider the above U(1) model where we now remove the heavy

down-Higgs messenger with charge -4, that is H
(4)
d , together with its conjugate partner

H
(4)
u . This results in setting the 1-2, 1-3 and 2-1 entries in Yd. to zero. But at the same

time this also removes the coupling φH
(4)
d H

(5)
u from the theory, so that also the 1-1 entry

would be zero as H
(5)
d would not take a vev. In order to restore it, one has to introduce

singlet messengers. Specifically, one must add vector-like singlets S5,4,3,2 + S−5,−4,−3,−2 to

the theory. Besides mass terms, the new allowed couplings are

W ⊃ hdH(5)
u S−5 + φ (S5S−4 + S4S−3 + S3S−2 + S2φ) . (A.14)
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The last coupling induces a vev for S−2, this one a vev for S−3, this a vev for S−4 and S−5,

which finally gives together with the first interaction a vev to H
(5)
d .

Let us notice that with a similar procedure one can eliminate the 3-1 entry (by drop-

ping H
(2)
d ), whilst the 2-3 and 3-2 entries cannot be set to zero without removing the 2-2

and the 3-3 entry, respectively. In this U(1) example, one can therefore enforce at most

the following texture for Yd:

Yd ∼


ε5 0 0

0 ε3 ε3

0 ε ε

 , (A.15)

that has the interesting feature that the Cabibbo angle arises entirely from the up sector.

A.2 U(1)× U(1)′

Next we consider the U(1)×U(1)′ model in ref. [2]. The charges of the MSSM superfields are

q1,2,3 : (0, 1) (1, 0) (0, 0)

uc1,2,3 : (0, 1) (−1, 1) (0, 0)

dc1,2,3 : (0, 1) (1, 0) (1, 0), (A.16)

the Higgs are neutral and the three flavons {φ1, φ1, φ2} have charges {(−1, 0), (1, 0),

(0,−1)} and take vevs {ε1 ∼ ε2, ε1 = ε1, ε2 ∼ ε3}. The effective Yukawas are then given by

Yu ∼


ε22 ε1ε

2
2 ε2

ε1ε2 ε2 ε1

ε2 ε1ε2 1

 ∼

ε6 ε8 ε3

ε5 ε3 ε2

ε3 ε5 1



Yd ∼


ε22 ε1ε2 ε1ε2

ε1ε2 ε21 ε21

ε2 ε1 ε1

 ∼

ε6 ε5 ε5

ε5 ε4 ε4

ε3 ε2 ε2

 . (A.17)

A.2.1 Fermion UVC

The determinants of the Yukawas in eq. (A.17) are

detYu ∼ ε32 detYd ∼ ε31ε22, (A.18)

so that one needs 3 messengers in the up and 5 in the down sector. We again choose in both

sectors the diagonal entries, and build the associated chains with right-handed messengers

only. In the up sector we take (out of 6 possibilities) the chain

q1−U(0,−1)−U(0,0)−uc1 (A.19)

q2−U(−1,0)−uc2, (A.20)

while in the down sector we take (out of 18 possibilities)

q1−D(0,1)−D(0,0)−dc1 (A.21)
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q2−D(−1,0)−D′(0,0)−d
c
2 (A.22)

q3−D′′(0,0)−d
c
3. (A.23)

In total we use 3 messengers for the up sector and 5 messengers for the down sector, which

is the minimal number needed.

A.2.2 Higgs UVC

By introducing heavy Higgs messengers with charges (plus conjugates):

Hu : (0,−2), (1,−2), (0,−1), (−1,−1), (−1, 0), (1,−1)

Hd : (0,−2), (−1,−1), (−2, 0), (0,−1), (−1, 0).

one can generate all entries in the Yukawa matrices of eq. (A.17).

A.3 SU(3)F

Finally we provide an example with a non-abelian flavour symmetry. We take the SU(3)

model in ref. [19]. All the MSSM superfields, q, uc and dc transform as triplets of SU(3).

Three anti-triplets flavons are introduced with vevs of the form

〈φ̄3〉
M
∼ (0, 0, ε3),

〈φ̄23〉
M

∼ (0, 1,−1)× ε23,
〈φ̄123〉
M

∼ (1, 1, 1)× ε123, (A.24)

with ε23 = ε, ε123 = ε2 and ε3 = O (1). The expansion parameter ε is assumed to be

different in the up and down sector, with εu ∼ 0.05, εd ∼ 0.15. In order to differentiate

lepton and down-quark mass matrices, a field Σ is introduced, with 〈Σ〉/M = σ ∝ (B−L).

Unwanted operators are forbidden with additional symmetries, under which the flavons are

charged while the MSSM superfields are neutral. For our purposes, here we can simply

take a single U(1)H, with H(φ̄3) = 2, H(φ̄23) = 1, H(φ̄123) = 3, H(Σ) = 2. The MSSM

Higgs fields have H = −4. The above set-up gives rise to Yukawas of the form

Yu,d ∼


0 ε123ε23 ε123ε23

ε123ε23 ε223σ ε223σ

ε123ε23 ε223σ ε23

 ∼


0 ε3u,d ε3u,d

ε3u,d ε
2
u,d ε2u,d

ε3u,d ε
2
u,d O (1)

 . (A.25)

A.3.1 Fermion UVC

The determinant of the Yukawas in eq. (A.25) is

detYu,d ∼ ε23ε223ε
2
123, (A.26)

so that 6 messengers in both sectors are required. From eq. (A.25), we see that the leading

contribution to the determinant is given by the Yukawa entries Y33, Y12 and Y21. Let us

construct a minimal set of messengers for the up sector (the down sector is analogous).

We choose to build the three chains with the Higgs in the middle (in total we have 27

possibilities11)

q3−Q2−U2−uc3 (A.27)

11Some of these possibilities might require additional fields in order to write the theory in an SU(3)

invariant way: actually only three possibilities have the minimal number of fields and are SU(3) invariant.
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q1−Q3−U1−uc2 (A.28)

q2−Q1−U3−uc1, (A.29)

where all 6 messengers are SU(3) singlets and are labelled with the additional U(1)H charge.

A.3.2 Higgs UVC

One needs to introduce (both in the up and in the down sector) a heavy Higgs transforming

as 6 under SU(3) and neutral under U(1)H, which couples directly to the SM fermions.12

In addition one needs three anti-triplets Higgs with H = −3, H = −2, H = −1:

H6, H
(−3)

3
, H

(−2)

3
, H

(−1)

3
, (A.30)

or alternatively two sexplet singlets with H = 2, H = 4:

H6, S
(2)

6
, S

(4)

6
, (A.31)

plus the corresponding conjugate fields.

B Explicit examples of RG induced flavour violation

We now show an explicit example of the RG effect discussed in section 4. We consider

the U(1) model described in appendix A.1 in the case of HUVC. The starting point is

the superpotential in eq. (A.10). As an effect of the flavour symmetry breaking, Higgs

messengers mix among themselves. The RGEs for the soft masses can be conveniently

derived in the messenger mass eigenbasis. Concentrating on the down 1-2 sector, we obtain

for the mass splittings in leading log approximation:

(m2
d̃
)22 − (m2

d̃
)11≈

12

16π2
m̃2

0

[
(λd†λd)11 − (λd†λd)22

]
log

MS

M
, (B.1)

(m2
q̃)22 − (m2

q̃)11≈
6

16π2
m̃2

0

[
(λu†λu)11−(λu†λu)22+(λd†λd)11−(λd†λd)22

]
log

MS

M
, (B.2)

where we have neglected the contribution of the A-terms. These splittings induce the

following contributions to the off-diagonal entries in the super-CKM basis:

(m2
d̃
)ROT
12 =

[
(m2

d̃
)22 − (m2

d̃
)11

]
θDR12 , (B.3)

(m2
q̃)

ROT
12 =

[
(m2

q̃)22 − (m2
q̃)11

]
θDL12 . (B.4)

The mixing angles can be easily estimated from eq. (A.12):

θDR12 ≈
λd21

λd22

α−3 ε , θDL12 ≈
λd12

λd22

α−3 ε . (B.5)

As mentioned above there is also a contribution to the off-diagonal entries directly generated

by the running, that at leading log reads:

(m2
d̃
)RG
12 ≈

12

16π2
m̃2

0

(
λd∗11λ

d
12α
∗
−4 + λd∗21λ

d
22α
∗
−3 + λd∗31λ

d
32α
∗
−1

)
ε log

MS

M
, (B.6)

12A SU(3) triplet messenger H3 would lead to antisymmetric Yukawa matrices.
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(m2
q̃)

RG
12 ≈

6

16π2
m̃2

0

(
λd∗11λ

d
21α
∗
−4 + λd∗12λ

d
22α
∗
−3 + λd∗13λ

d
23α
∗
−1

+λu∗11λ
d
21α
∗
6 + λu∗12λ

d
22α
∗
5 + λu∗13λ

d
23α
∗
3

)
ε log

MS

M
, (B.7)

where again the effect of the trilinears is neglected. As we can see, these expressions do not

cancel in general against the contributions of eqs. (B.3), (B.4), since they involve different

O (1) coefficients. They also show that the enhancement factor ∼10 we considered for our

estimates is a reasonable approximation.

Let us now discuss the same effect for the SU(3) model with HUVC. We start from

the following superpotential for the UVC of eq. (A.30):

W ⊃ λdqidcjH
(ij)

6
+ α3H̄

(ij)

6
φi3H

(−2)j

3
+ α23H̄

(ij)

6
φi23H

(−1)j

3
+ . . . (B.8)

where i and j denote SU(3)F indices and we omitted the messenger mass terms and other

couplings that are not relevant for the present discussion. From the mass eigenbasis for

the Higgs messengers, we see that H6 acquires small components of the other messengers:

H ′
6
∼ H6 + α3

〈φ3〉
M

H
(−2)

3
+ α23

〈φ23〉
M

H
(−1)

3
+ . . . (B.9)

Plugging this expression in eq. (B.8), we see that qid
c
j couple with H

(−2)

3
and H

(−1)

3
non-

universal in flavour, as 〈φi3〉 = 0 for i 6= 3 and 〈φi23〉 = 0 for i 6= 2, 3. In the running for m2
q̃

and m2
d̃
, this induces a splitting ∝ λ2

dα
2
23ε

2
23 ∼ ε2d between the first and second generation

sfermion masses and a splitting ∝ λ2
dα

2
3ε

2
3 ∼ O (1) between the third generation mass and

the other two. Therefore the induced off-diagonal entries (m2
q̃)12 and (m2

d̃
)12 are just sup-

pressed by an additional ε2d factor with respect to the abelian case discussed above and the

entries involving the third family have no further suppression.
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