67 research outputs found
Quantification of large and middle proteins of hepatitis B virus surface antigen (HBsAg) as a novel tool for the identification of inactive HBV carriers
Objective Among individuals with chronic hepatitis B, those with hepatitis B e-antigen (HBeAg)-negative chronic hepatitis (CHB) can be difficult to distinguish from those with HBeAg-negative chronic HBV infection, also referred to as inactive HBV carriers (ICs), but both require different medical management. The level of HBV surface antigen (HBsAg) has been proposed as a marker to discriminate between chronic infection and hepatitis stages. HBsAg consists of large, middle and small HBs. The aim of this study was to determine whether the composition of HBsAg improved the identification of ICs among HBsAg-positive subjects with different phases of HBV infections. Design HBV large surface proteins (LHBs) and HBV middle surface proteins (MHBs) were quantified in serum samples from 183 clinically well-characterised untreated patients with acute (n=14) HBV infection, ICs (n=44), CHBs (n=46), chronic HBeAg-positive phase (n=68) and hepatitis delta coinfection (n=11) using an ELISA, with well-defined monoclonal antibodies against the preS1 domain (LHBs) and the preS2-domain (MHBs). A Western blot analysis was used to verify the quantitation of the components of HBsAg. Total HBsAg was quantified using a modified commercially available assay (HBsAg V. 6.0, Enzygnost, Siemens, Erlangen). Results The composition of HBsAg showed specific patterns across different phases of hepatitis B. Individuals in the IC phase had significantly lower proportions of LHBs and MHBs than patients in acute or chronic phases irrespective of their HBV e-antigen status (p< 0.0001) or HBsAg level. Both LHBs and MHBs ratios better predicted the IC phase than total HBsAg levels. Conclusion Quantification of MHBs, particularly LHBs represents a novel tool for the identification of the IC stage
Serum hepatitis B virus RNA predicts response to peginterferon treatment in HBeAg-positive chronic hepatitis B
Hepatitis B virus (HBV) RNA in serum is a novel biomarker that reflects cccDNA activity. We investigated whether HBV RNA can predict serological response to peginterferon (PEG-IFN) treatment. Serum HBV RNA levels were retrospectively measured at weeks 0, 12, 24 and 52 of therapy and after treatment discontinuation (week 78) in 266 HBeAg-positive chronic HBV patients who had participated in a global randomized controlled trial (HBV99-01 study). Patients received 52 weeks PEG-IFN monotherapy (n = 136) or PEG-IFN and lamivudine (n = 130). The primary end point was HBeAg loss 24 weeks after PEG-IFN discontinuation. At baseline, the mean serum level of HBV RNA was 6.8 (SD 1.2) log c/mL. HBV RNA levels declined to 4.7 (1.7) log c/mL after one year of PEG-IFN therapy alone and to 3.3 (1.2)log c/mL after combination therapy. From week 12 onward, HBV RNA level was significantly lower in patients who achieved HBeAg loss at the end of follow-up as compared to those who did not, regardless of treatment allocation (week 12:4.4 vs 5.1 log c/mL, P =.01; week 24:3.7 vs 4.9 log c/mL, P <.001). The performance of a multivariable model based on HBV RNA level was comparable at week 12 (AUC 0.68) and 24 (AUC 0.72) of therapy. HBV RNA level above 5.5 log c/mL at week 12 showed negative predictive values of 93/67/90/64% for HBV genotypes A/B/C/D for the prediction of HBeAg loss. In conclusion, HBV RNA in serum declines profoundly during PEG-IFN treatment. Early on-treatment HBV RNA level may be used to predict nonresponse
Compositional and Temporal Changes in the Gut Microbiome of Pediatric Ulcerative Colitis Patients Are Linked to Disease Course
Evaluating progression risk and determining optimal therapy for ulcerative colitis (UC) is challenging as many patients exhibit incomplete responses to treatment. As part of the PROTECT (Predicting Response to Standardized Colitis Therapy) Study, we evaluated the role of the gut microbiome in disease course for 405 pediatric, new-onset, treatment-naive UC patients. Patients were monitored for 1 year upon treatment initiation, and microbial taxonomic composition was analyzed from fecal samples and rectal biopsies. Depletion of core gut microbes and expansion of bacteria typical of the oral cavity were associated with baseline disease severity. Remission and refractory disease were linked to species-specific temporal changes that may be implicative of therapy efficacy, and a pronounced increase in microbiome variability was observed prior to colectomy. Finally, microbial associations with disease-associated serological markers suggest host-microbial interactions in UC. These insights will help improve existing treatments and develop therapeutic approaches guiding optimal medical car
Ten millennia of hepatitis B virus evolution
Hepatitis B virus (HBV) has been infecting humans for millennia and remains a global health problem, but its past diversity and dispersal routes are largely unknown. We generated HBV genomic data from 137 Eurasians and Native Americans dated between ~10,500 and ~400 years ago. We date the most recent common ancestor of all HBV lineages to between ~20,000 and 12,000 years ago, with the virus present in European and South American hunter-gatherers during the early Holocene. After the European Neolithic transition, Mesolithic HBV strains were replaced by a lineage likely disseminated by early farmers that prevailed throughout western Eurasia for ~4000 years, declining around the end of the 2nd millennium BCE. The only remnant of this prehistoric HBV diversity is the rare genotype G, which appears to have reemerged during the HIV pandemic
Stable and robust nanotubes formed from self-assembled polymer membranes
We create long polymer nanotubes by directly pulling on the membrane of polymersomes using either optical tweezers or a micropipette. The polymersomes are composed of amphiphilic diblock copolymers and the nanotubes formed have an aqueous core connected to the aqueous interior of the polymersome. We stabilize the pulled nanotubes by subsequent chemical cross-linking. The cross-linked nanotubes are extremely robust and can be moved to another medium for use elsewhere. We demonstrate the ability to form networks of polymer nanotubes and polymersomes by optical manipulation. The aqueous core of the polymer nanotubes together with their robust character makes them interesting candidates for nanofluidics and other applications in biotechnology
- …