2,822 research outputs found

    The Patterns of High-Level Magnetic Activity Occurring on the Surface of V1285 Aql: The OPEA Model of Flares and DFT Models of Stellar Spots

    Full text link
    Statistically analyzing Johnson UBVR observations of V1285 Aql during the three observing seasons, both activity level and behavior of the star are discussed in respect to obtained results. We also discuss the out-of-flare variation due to rotational modulation. Eighty-three flares were detected in the U-band observations of season 2006 . First, depending on statistical analyses using the independent samples t-test, the flares were divided into two classes as the fast and the slow flares. According to the results of the test, there is a difference of about 73 s between the flare-equivalent durations of slow and fast flares. The difference should be the difference mentioned in the theoretical models. Second, using the one-phase exponential association function, the distribution of the flare-equivalent durations versus the flare total durations was modeled. Analyzing the model, some parameters such as plateau, half-life values, mean average of the flare-equivalent durations, maximum flare rise, and total duration times are derived. The plateau value, which is an indicator of the saturation level of white-light flares, was derived as 2.421{\pm}0.058 s in this model, while half-life is computed as 201 s. Analyses showed that observed maximum value of flare total duration is 4641 s, while observed maximum flare rise time is 1817 s. According to these results, although computed energies of the flares occurring on the surface of V1285 Aql are generally lower than those of other stars, the length of its flaring loop can be higher than those of more active stars.Comment: 44 pages, 10 figures, 5 tables, 2011PASP..123..659

    Bound states of 3He at the edge of a 4He drop on a cesium surface

    Get PDF
    We show that small amounts of 3He atoms, added to a 4He drop deposited on a flat cesium surface at zero temperature, populate bound states localized at the contact line. These edge states show up for drops large enough to develop well defined surface and bulk regions together with a contact line, and they are structurally different from the well-known Andreev states that appear at the free surface and at the liquid-solid interface of films. We illustrate the one-body density of 3He in a drop with 1000 4He atoms, and show that for sufficiently large number of impurities, the density profiles spread beyond the edge, coating both the curved drop surface and its flat base and eventually isolating it from the substrate.Comment: 10 pages and 7 figures. Submitted to PR

    The Chromospheric Activity and Ages of M Dwarf Stars in Wide Binary Systems

    Get PDF
    We investigate the relationship between age and chromospheric activity for 139 M dwarf stars in wide binary systems with white dwarf companions. The age of each system is determined from the cooling age of its white dwarf component. The current limit for activity-age relations found for M dwarfs in open clusters is 4 Gyr. Our unique approach to finding ages for M stars allows for the exploration of this relationship at ages older than 4 Gyr. The general trend of stars remaining active for a longer time at later spectral type is confirmed. However, our larger sample and greater age range reveals additional complexity in assigning age based on activity alone. We find that M dwarfs in wide binaries older than 4 Gyr depart from the log-linear relation for clusters and are found to have activity at magnitudes, colors and masses which are brighter, bluer and more massive than predicted by the cluster relation. In addition to our activity-age results, we present the measured radial velocities and complete space motions for 161 white dwarf stars in wide binaries.Comment: 22 pages including 9 figures and 5 tables. Accepted for publication in The Astronomical Journa

    Retrieval of Snow Water Equivalent by the Precipitation Imaging Package (PIP) in the Northern Great Lakes

    Get PDF
    Performance of the Precipitation Imaging Package (PIP) for estimating the snow water equivalent (SWE) is evaluated through a comparative study with the collocated National Oceanic and Atmospheric Administration National Weather Service snow stake field measurements. The PIP together with a vertically pointing radar, a weighing bucket gauge, and a laser-optical disdrometer was deployed at the NWS Marquette, Michigan, office building for a long-term field study supported by the National Aeronautics and Space Administration's Global Precipitation Measurement mission Ground Validation program. The site was also equipped with a weather station. During the 2017/18 winter, the PIP functioned nearly uninterrupted at frigid temperatures accumulating 2345.8 mm of geometric snow depth over a total of 499 h. This long record consists of 30 events, and the PIP-retrieved and snow stake field measured SWE differed less than 15% in every event. Two of the major events with the longest duration and the highest accumulation are examined in detail. The particle mass with a given diameter was much lower during a shallow, colder, uniform lake-effect event than in the deep, less cold, and variable synoptic event. This study demonstrated that the PIP is a robust instrument for operational use, and is reliable for deriving the bulk properties of falling snow.Peer reviewe

    GRAPE: GRaphical Abstracted Protein Explorer

    Get PDF
    The region surrounding a protein, known as the surface of interaction or molecular surface, can provide valuable insight into its function. Unfortunately, due to the complexity of both their geometry and their surface fields, study of these surfaces can be slow and difficult and important features may be hard to identify. Here, we describe our GRaphical Abstracted Protein Explorer, or GRAPE, a web server that allows users to explore abstracted representations of proteins. These abstracted surfaces effectively reduce the level of detail of the surface of a macromolecule, using a specialized algorithm that removes small bumps and pockets, while preserving large-scale structural features. Scalar fields, such as electrostatic potential and hydropathy, are smoothed to further reduce visual complexity. This entirely new way of looking at proteins complements more traditional views of the molecular surface. GRAPE includes a thin 3D viewer that allows users to quickly flip back and forth between both views. Abstracted views provide a fast way to assess both a molecule's shape and its different surface field distributions. GRAPE is freely available at http://grape.uwbacter.org

    The Ethics of Care: Normative Structures and Empirical Implications

    Get PDF
    In this article I argue that the ethics of care provides us with a novel reading of human relations, and therefore makes possible a fresh approach to several empirical challenges. In order to explore this connection, I discuss some specific normative features of the ethics of care—primarily the comprehension of the moral agent and the concept of care—as these two key elements contribute substantially to a new ethical outlook. Subsequently, I argue that the relational and reciprocal mode of thinking with regard to the moral agent must be extended to our understanding of care. I term this comprehension “mature care”. Citing conflicts of interests as examples, I demonstrate how this conceptualization of care may further advance the ethics of care’s ability to take on empirical challenges. Finally, I discuss political implications that may emanate from the ethics of care and the concept of mature care

    Dielectronic Recombination of Argon-Like Ions

    Full text link
    We present a theoretical investigation of dielectronic recombination (DR) of Ar-like ions that sheds new light on the behavior of the rate coefficient at low-temperatures where these ions form in photoionized plasmas. We provide results for the total and partial Maxwellian-averaged DR rate coefficients from the initial ground level of K II -- Zn XIII ions. It is expected that these new results will advance the accuracy of the ionization balance for Ar-like M-shell ions and pave the way towards a detailed modeling of astrophysically relevant X-ray absorption features. We utilize the AUTOSTRUCTURE computer code to obtain the accurate core-excitation thresholds in target ions and carry out multiconfiguration Breit-Pauli (MCBP) calculations of the DR cross section in the independent-processes, isolated-resonance, distorted-wave (IPIRDW) approximation. Our results mediate the complete absence of direct DR calculations for certain Ar-like ions and question the reliability of the existing empirical rate formulas, often inferred from renormalized data within this isoelectronic sequence

    The Density of Coronal Plasma in Active Stellar Coronae

    Get PDF
    We have analyzed high-resolution X-ray spectra of a sample of 22 active stars observed with the High Energy Transmission Grating Spectrometer on {\em Chandra} in order to investigate their coronal plasma density. Densities where investigated using the lines of the He-like ions O VII, Mg XI, and Si XIII. While Si XIII lines in all stars of the sample are compatible with the low-density limit, Mg XI lines betray the presence of high plasma densities (>1012> 10^{12} cm3^{-3}) for most of the sources with higher X-ray luminosity (>1030> 10^{30} erg/s); stars with higher LXL_X and LX/LbolL_X/L_{bol} tend to have higher densities at high temperatures. Ratios of O VII lines yield much lower densities of a few 101010^{10} cm3^{-3}, indicating that the ``hot'' and ``cool'' plasma resides in physically different structures. Our findings imply remarkably compact coronal structures, especially for the hotter plasma emitting the Mg XI lines characterized by coronal surface filling factor, fMgXIf_{MgXI}, ranging from 10410^{-4} to 10110^{-1}, while we find fOVIIf_{OVII} values from a few 10310^{-3} up to 1\sim 1 for the cooler plasma emitting the O VII lines. We find that fOVIIf_{OVII} approaches unity at the same stellar surface X-ray flux level as solar active regions, suggesting that these stars become completely covered by active regions. At the same surface flux level, fMgXIf_{MgXI} is seen to increase more sharply with increasing surface flux. These results appear to support earlier suggestions that hot 10710^7 K plasma in active coronae arises from flaring activity, and that this flaring activity increases markedly once the stellar surface becomes covered with active regions.Comment: 53 pages, 19 figures, accepted for publication in Astrophysical Journal. A version of the paper with higher quality figures is available from http://www.astropa.unipa.it/Library/preprint.htm
    corecore