40 research outputs found

    Dynamics of C-phycocyanin in various deuterated trehalose/water environments measured by quasielastic and elastic neutron scattering

    Get PDF
    The molecular understanding of protein stabilization by the disaccharide trehalose in extreme temperature or hydration conditions is still debated. In the present study, we investigated the role of trehalose on the dynamics of the protein C-phycocyanin (C-PC) by neutron scattering. To single out the motions of C-PC hydrogen (H) atoms in various trehalose/water environments, measurements were performed in deuterated trehalose and heavy water (D2O). We report that trehalose decreases the internal C-PC dynamics, as shown by a reduced diffusion coefficient of protein H atoms. By fitting the Elastic Incoherent Structure Factor—which gives access to the “geometry” of the internal proton motions—with the model of diffusion inside a sphere, we found that the presence of trehalose induces a significantly higher proportion of immobile C-PC hydrogens. We investigated, by elastic neutron scattering, the mean square displacements (MSDs) of deuterated trehalose/D2O-embedded C-PC as a function of temperature in the range of 40–318 K. Between 40 and ∌225 K, harmonic MSDs of C-PC are slightly smaller in samples containing trehalose. Above a transition temperature of ∌225 K, we observed anharmonic motions in all trehalose/water-coated C-PC samples. In the hydrated samples, MSDs are not significantly changed by addition of 15% trehalose but are slightly reduced by 30% trehalose. In opposition, no dynamical transition was detected in dry trehalose-embedded C-PC, whose hydrogen motions remain harmonic up to 318 K. These results suggest that a role of trehalose would be to stabilize proteins by inhibiting some fluctuations at the origin of protein unfolding and denaturation

    Rhodococcus equi's Extreme Resistance to Hydrogen Peroxide Is Mainly Conferred by One of Its Four Catalase Genes

    Get PDF
    Rhodococcus equi is one of the most widespread causes of disease in foals aged from 1 to 6 months. R. equi possesses antioxidant defense mechanisms to protect it from reactive oxygen metabolites such as hydrogen peroxide (H(2)O(2)) generated during the respiratory burst of phagocytic cells. These defense mechanisms include enzymes such as catalase, which detoxify hydrogen peroxide. Recently, an analysis of the R. equi 103 genome sequence revealed the presence of four potential catalase genes. We first constructed \u394katA-, \u394katB-, \u394katC-and \u394katD-deficient mutants to study the ability of R. equi to survive exposure to H(2)O(2)in vitro and within mouse peritoneal macrophages. Results showed that \u394katA and, to a lesser extent \u394katC, were affected by 80 mM H(2)O(2). Moreover, katA deletion seems to significantly affect the ability of R. equi to survive within murine macrophages. We finally investigated the expression of the four catalases in response to H(2)O(2) assays with a real time PCR technique. Results showed that katA is overexpressed 367.9 times (\ub1122.6) in response to exposure to 50 mM of H(2)O(2) added in the stationary phase, and 3.11 times (\ub10.59) when treatment was administered in the exponential phase. In untreated bacteria, katB, katC and katD were overexpressed from 4.3 to 17.5 times in the stationary compared to the exponential phase. Taken together, our results show that KatA is the major catalase involved in the extreme H(2)O(2) resistance capability of R. equi

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Genomic Characterization of the Taylorella Genus

    Get PDF
    The Taylorella genus comprises two species: Taylorella equigenitalis, which causes contagious equine metritis, and Taylorella asinigenitalis, a closely-related species mainly found in donkeys. We herein report on the first genome sequence of T. asinigenitalis, analyzing and comparing it with the recently-sequenced T. equigenitalis genome. The T. asinigenitalis genome contains a single circular chromosome of 1,638,559 bp with a 38.3% GC content and 1,534 coding sequences (CDS). While 212 CDSs were T. asinigenitalis-specific, 1,322 had orthologs in T. equigenitalis. Two hundred and thirty-four T. equigenitalis CDSs had no orthologs in T. asinigenitalis. Analysis of the basic nutrition metabolism of both Taylorella species showed that malate, glutamate and alpha-ketoglutarate may be their main carbon and energy sources. For both species, we identified four different secretion systems and several proteins potentially involved in binding and colonization of host cells, suggesting a strong potential for interaction with their host. T. equigenitalis seems better-equipped than T. asinigenitalis in terms of virulence since we identified numerous proteins potentially involved in pathogenicity, including hemagluttinin-related proteins, a type IV secretion system, TonB-dependent lactoferrin and transferrin receptors, and YadA and Hep_Hag domains containing proteins. This is the first molecular characterization of Taylorella genus members, and the first molecular identification of factors potentially involved in T. asinigenitalis and T. equigenitalis pathogenicity and host colonization. This study facilitates a genetic understanding of growth phenotypes, animal host preference and pathogenic capacity, paving the way for future functional investigations into this largely unknown genus

    Identification of Taylorella equigenitalis responsible for contagious equine metritis in equine genital swabs by direct polymerase chain reaction

    No full text
    International audienceA direct-PCR assay was developed for the rapid detection of Taylorella equigenitalis, a Gram-negative bacterium responsible for contagious equine metritis (CEM) in Equidae. The bacteria may be detected in equine genital swabs without need for a preliminary step of DNA extraction or bacterial isolation. Specificity was determined with 125 isolates of T. equigenitalis, 24 isolates of Taylorella asinigenitalis, five commensal bacteria of the genital tract and a facultative intracellular pathogen of foals found in large concentration in soil. Our PCR is specific and amplified a 413-bp 16S ribosomal DNA product only in all T. equigenitalis

    Survival of taylorellae in the environmental amoeba Acanthamoeba castellanii

    Get PDF
    International audienceBackground Taylorella equigenitalis is the causative agent of contagious equine metritis, a sexually-transmitted infection of Equidae characterised in infected mares by abundant mucopurulent vaginal discharge and a variable degree of vaginitis, cervicitis or endometritis, usually resulting in temporary infertility. The second species of the Taylorella genus, Taylorella asinigenitalis, is considered non-pathogenic, although mares experimentally infected with this bacterium can develop clinical signs of endometritis. To date, little is understood about the basic molecular virulence and persistence mechanisms employed by the Taylorella species. To clarify these points, we investigated whether the host-pathogen interaction model Acanthamoeba castellanii was a suitable model for studying taylorellae.ResultsWe herein demonstrate that both species of the Taylorella genus are internalised by a mechanism involving the phagocytic capacity of the amoeba and are able to survive for at least one week inside the amoeba. During this one-week incubation period, taylorellae concentrations remain strikingly constant and no overt toxicity to amoeba cells was observed.ConclusionsThis study provides the first evidence of the capacity of taylorellae to survive in a natural environment other than the mammalian genital tract, and shows that the alternative infection model, A. castellanii, constitutes a relevant alternative system to assess host-pathogen interactions of taylorellae. The survival of taylorellae inside the potential environmental reservoir A. castellanii brings new insight, fostering a broader understanding of taylorellae biology and its potential natural ecological niche

    Immune response to Rhodococcus equi ATCC 33701-secreted proteins in mice and identification of immunogenic recombinant proteins by dot-blotting

    No full text
    International audienceRhodococcus equi remains a significant pathogen, causing severe pneumonia in foals. The development of vaccines and serologic diagnosis could be greatly facilitated by studying the humoral immune response to this equine pathogen. In this study, a crude extract of R. equi ATCC 33701-secreted proteins combined with the MontanideÂź ISA70 adjuvant was found to be highly immunogenic in mice with the highest titer of 99,000 on day 42 after the first subcutaneous immunization. This immune response was dependent on the quantity of proteins injected and the presence of adjuvant. By dot-blotting, eight recombinant secreted proteins were identified to react strongly with sera from immunized mice. Of these eight proteins, four were detected as immunogenic only when administered in conjunction with adjuvant. This screening strategy led to the identification of promising new candidates for vaccine development
    corecore