737 research outputs found

    The Sunyaev-Zeldovich effect in superclusters of galaxies using gasdynamical simulations: the case of Corona Borealis

    Full text link
    [Abridged] We study the thermal and kinetic Sunyaev-Zel'dovich (SZ) effect associated with superclusters of galaxies using the MareNostrum Universe SPH simulation. We consider superclusters similar to the Corona Borealis Supercluster (CrB-SC). This paper is motivated by the detection at 33GHz of a strong temperature decrement in the CMB towards the core of this supercluster. Multifrequency observations with VSA and MITO suggest the existence of a thermal SZ effect component in the spectrum of this cold spot, which would account for roughly 25% of the total observed decrement. We identify nine regions containing superclusters similar to CrB-SC, obtain the associated SZ maps and calculate the probability of finding such SZ signals arising from hot gas within the supercluster. Our results show that WHIM produces a thermal SZ effect much smaller than the observed value. Neither can summing the contribution of small clusters and galaxy groups in the region explain the amplitude of the SZ signal. When we take into account the actual posterior distribution from the observations, the probability that WHIM can cause a thermal SZ signal like the one observed is <1%, rising up to a 3.2% when the contribution of small clusters and galaxy groups is included. If the simulations provide a suitable description of the gas physics, then we conclude that the thermal SZ component of the CrB spot most probably arises from an unknown galaxy cluster along the line of sight. The simulations also show that the kinetic SZ signal associated with the supercluster cannot provide an explanation for the remaining 75% of the observed cold spot in CrB.Comment: Accepted for publication in MNRAS. 14 pages, 9 figure

    The BaR-SPOrt Experiment

    Get PDF
    BaR-SPOrt (Balloon-borne Radiometers for Sky Polarisation Observations) is an experiment to measure the linearly polarized emission of sky patches at 32 and 90 GHz with sub-degree angular resolution. It is equipped with high sensitivity correlation polarimeters for simultaneous detection of both the U and Q stokes parameters of the incident radiation. On-axis telescope is used to observe angular scales where the expected polarization of the Cosmic Microwave Background (CMBP) peaks. This project shares most of the know-how and sophisticated technology developed for the SPOrt experiment onboard the International Space Station. The payload is designed to flight onboard long duration stratospheric balloons both in the Northern and Southern hemispheres where low foreground emission sky patches are accessible. Due to the weakness of the expected CMBP signal (in the range of microK), much care has been spent to optimize the instrument design with respect to the systematics generation, observing time efficiency and long term stability. In this contribution we present the instrument design, and first tests on some components of the 32 GHz radiometer.Comment: 12 pages, 10 figures, Astronomical Telescopes and Instrumentation (Polaimetry in Astronomy) Hawaii August 2002 SPIE Meetin

    Millimetric observations with a high-altitude 2.6-m ground based telescope

    Get PDF
    High atmospheric performances are necessary to ensure efficient sub/millimetre cosmological observations from ground. Low atmospheric components fluctuations along the line of sight are a must for best detector applications. Such site constraints are attained only at in specific places around the world: highaltitude observatories or, equivalently, polar regions. We are currently involved in cosmological observations with the MITO project from an Alpine ground station which satisfies such requirements: the Testa Grigia mountain at 3500 m a.s.l., AO—Italy. The Chacaltaya laboratory at 5200 m a.s.l. could also be an appropriate mm-site. One of the goals of MITO is the multifrequency observation of nearby rich clusters of galaxies for measuring the Sunyaev-Zel’dovich effect. Combined S-Z and X-ray measurements yield the Hubble constant and other cosmological information. A dedicated instrument has been designed to minimize spurious contaminations on the signals. The telescope is a 2.6 m Cassegrain with a wobbling subreflector and a 4-band single pixel photometer installed at the focal plane. The bolometric detectors are cooled down to 300 mK by a double stage He3-He4 fridge

    Millimetric observations with a high-altitude 2.6-m ground based telescope

    Get PDF
    High atmospheric performances are necessary to ensure efficient sub/millimetre cosmological observations from ground. Low atmospheric components fluctuations along the line of sight are a must for best detector applications. Such site constraints are attained only at in specific places around the world: highaltitude observatories or, equivalently, polar regions. We are currently involved in cosmological observations with the MITO project from an Alpine ground station which satisfies such requirements: the Testa Grigia mountain at 3500 m a.s.l., AO—Italy. The Chacaltaya laboratory at 5200 m a.s.l. could also be an appropriate mm-site. One of the goals of MITO is the multifrequency observation of nearby rich clusters of galaxies for measuring the Sunyaev-Zel’dovich effect. Combined S-Z and X-ray measurements yield the Hubble constant and other cosmological information. A dedicated instrument has been designed to minimize spurious contaminations on the signals. The telescope is a 2.6 m Cassegrain with a wobbling subreflector and a 4-band single pixel photometer installed at the focal plane. The bolometric detectors are cooled down to 300 mK by a double stage He3-He4 fridge

    Non-parametric deprojection of NIKA SZ observations: Pressure distribution in the Planck-discovered cluster PSZ1 G045.85+57.71

    Get PDF
    The determination of the thermodynamic properties of clusters of galaxies at intermediate and high redshift can bring new insights into the formation of large-scale structures. It is essential for a robust calibration of the mass-observable scaling relations and their scatter, which are key ingredients for precise cosmology using cluster statistics. Here we illustrate an application of high resolution (<20(< 20 arcsec) thermal Sunyaev-Zel'dovich (tSZ) observations by probing the intracluster medium (ICM) of the \planck-discovered galaxy cluster \psz\ at redshift z=0.61z = 0.61, using tSZ data obtained with the NIKA camera, which is a dual-band (150 and 260~GHz) instrument operated at the IRAM 30-meter telescope. We deproject jointly NIKA and \planck\ data to extract the electronic pressure distribution from the cluster core (R∌0.02 R500R \sim 0.02\, R_{500}) to its outskirts (R∌3 R500R \sim 3\, R_{500}) non-parametrically for the first time at intermediate redshift. The constraints on the resulting pressure profile allow us to reduce the relative uncertainty on the integrated Compton parameter by a factor of two compared to the \planck\ value. Combining the tSZ data and the deprojected electronic density profile from \xmm\ allows us to undertake a hydrostatic mass analysis, for which we study the impact of a spherical model assumption on the total mass estimate. We also investigate the radial temperature and entropy distributions. These data indicate that \psz\ is a massive (M500∌5.5×1014M_{500} \sim 5.5 \times 10^{14} M⊙_{\odot}) cool-core cluster. This work is part of a pilot study aiming at optimizing the treatment of the NIKA2 tSZ large program dedicated to the follow-up of SZ-discovered clusters at intermediate and high redshifts. (abridged)Comment: 16 pages, 10 figure

    NIKA2: a mm camera for cluster cosmology

    Get PDF
    Galaxy clusters constitute a major cosmological probe. However, Planck 2015 results have shown a weak tension between CMB-derived and cluster-derived cosmological parameters. This tension might be due to poor knowledge of the cluster mass and observable relationship. As for now, arcmin resolution Sunyaev-Zeldovich (SZ) observations ({\it e.g.} SPT, ACT and Planck) only allowed detailed studies of the intra cluster medium for low redshift clusters (z0.5z0.5) high resolution and high sensitivity SZ observations are needed. With both a wide field of view (6.5 arcmin) and a high angular resolution (17.7 and 11.2 arcsec at 150 and 260 GHz), the NIKA2 camera installed at the IRAM 30-m telescope (Pico Veleta, Spain) is particularly well adapted for these observations. The NIKA2 SZ observation program will map a large sample of clusters (50) at redshifts between 0.5 and 0.9. As a pilot study for NIKA2, several clusters of galaxies have been observed with the pathfinder, NIKA, at the IRAM 30-m telescope to cover the various configurations and observation conditions expected for NIKA2.

    Nika2: A mm camera for cluster cosmology

    Get PDF
    Galaxy clusters constitute a major cosmological probe. However, Planck 2015 results have shown a weak tension between CMB-derived and cluster-derived cosmological parameters. This tension might be due to poor knowledge of the cluster mass and observable relationship. As for now, arcmin resolution Sunyaev-Zeldovich (SZ) observations (e.g. SPT, ACT and Planck) only allowed detailed studies of the intra cluster medium for low redshift clusters (z 0:5) high resolution and high sensitivity SZ observations are needed. With both a wide field of view (6.5 arcmin) and a high angular resolution (17.7 and 11.2 arcsec at 150 and 260 GHz), the NIKA2 camera installed at the IRAM 30-m telescope (Pico Veleta, Spain) is particularly well adapted for these observations. The NIKA2 SZ observation program will map a large sample of clusters (50) at redshifts between 0.5 and 0.9. As a pilot study for NIKA2, several clusters of galaxies have been observed with the pathfinder, NIKA, at the IRAM 30-m telescope to cover the various configurations and observation conditions expected for NIKA2

    The MUSIC of CLASH: predictions on the concentration-mass relation

    Get PDF
    We present the results of a numerical study based on the analysis of the MUSIC-2 simulations, aimed at estimating the expected concentration-mass relation for the CLASH cluster sample. We study nearly 1400 halos simulated at high spatial and mass resolution, which were projected along many lines-of-sight each. We study the shape of both their density and surface-density profiles and fit them with a variety of radial functions, including the Navarro-Frenk-White, the generalised Navarro-Frenk-White, and the Einasto density profiles. We derive concentrations and masses from these fits and investigate their distributions as a function of redshift and halo relaxation. We use the X-ray image simulator X-MAS to produce simulated Chandra observations of the halos and we use them to identify objects resembling the X-ray morphologies and masses of the clusters in the CLASH X-ray selected sample. We also derive a concentration-mass relation for strong-lensing clusters. We find that the sample of simulated halos which resemble the X-ray morphology of the CLASH clusters is composed mainly by relaxed halos, but it also contains a significant fraction of un-relaxed systems. For such a sample we measure an average 2D concentration which is ~11% higher than found for the full sample of simulated halos. After accounting for projection and selection effects, the average NFW concentrations of CLASH clusters are expected to be intermediate between those predicted in 3D for relaxed and super-relaxed halos. Matching the simulations to the individual CLASH clusters on the basis of the X-ray morphology, we expect that the NFW concentrations recovered from the lensing analysis of the CLASH clusters are in the range [3-6], with an average value of 3.87 and a standard deviation of 0.61. Simulated halos with X-ray morphologies similar to those of the CLASH clusters are affected by a modest orientation bias.Comment: 21 pages, 16 figures, 3 tables, submitted to Ap

    Multistrip multigap symmetric RPC

    Get PDF
    Abstract The characteristics of a symmetric multigap resistive plate chamber with multistrip readout electrode, recently developed by us, continued to be investigated. Studies of the time resolution, efficiency, average charge and dark rate as a function of applied voltage and the influence of the angle of incidence of the detected particle on these observables have been performed. Different type of discriminators have been tested

    Mapping the kinetic Sunyaev-Zel'dovich effect toward MACS J0717.5+3745 with NIKA

    Get PDF
    Measurement of the gas velocity distribution in galaxy clusters provides insight into the physics of mergers, through which large scale structures form in the Universe. Velocity estimates within the intracluster medium (ICM) can be obtained via the Sunyaev-Zel'dovich (SZ) effect, but its observation is challenging both in term of sensitivity requirement and control of systematic effects, including the removal of contaminants. In this paper we report resolved observations, at 150 and 260 GHz, of the SZ effect toward the triple merger MACS J0717.5+3745 (z=0.55), using data obtained with the NIKA camera at the IRAM 30m telescope. Assuming that the SZ signal is the sum of a thermal (tSZ) and a kinetic (kSZ) component and by combining the two NIKA bands, we extract for the first time a resolved map of the kSZ signal in a cluster. The kSZ signal is dominated by a dipolar structure that peaks at -5.1 and +3.4 sigma, corresponding to two subclusters moving respectively away and toward us and coincident with the cold dense X-ray core and a hot region undergoing a major merging event. We model the gas electron density and line-of-sight velocity of MACS J0717.5+3745 as four subclusters. Combining NIKA data with X-ray observations from XMM-Newton and Chandra, we fit this model to constrain the gas line-of-sight velocity of each component, and we also derive, for the first time, a velocity map from kSZ data (i.e. that is model-dependent). Our results are consistent with previous constraints on the merger velocities, and thanks to the high angular resolution of our data, we are able to resolve the structure of the gas velocity. Finally, we investigate possible contamination and systematic effects with a special care given to radio and submillimeter galaxies. Among the sources that we detect with NIKA, we find one which is likely to be a high redshift lensed submillimeter galaxy.Comment: 19 pages, 9 figures, accepted in A&
    • 

    corecore