23 research outputs found

    Special Issue on “fruit metabolism and metabolomics”

    Get PDF
    Over the past 10 years, knowledge about several aspects of fruit metabolism has been greatly improved. Notably, high-throughput metabolomic technologies have allowed quantifying metabolite levels across various biological processes, and identifying the genes that underly fruit development and ripening. This Special Issue is designed to exemplify the current use of metabolomics studies of temperate and tropical fruit for basic research as well as practical applications. It includes articles about different aspects of fruit biochemical phenotyping, fruit metabolism before and after harvest, including primary and specialized metabolisms, and bioactive compounds involved in growth and environmental responses. The effect of genotype, stages of development or fruit tissue on metabolomic profiles and corresponding metabolism regulations are addressed, as well as the combination of other omics with metabolomics for fruit metabolism studies. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.partly funded by MetaboHUB (ANR‐11‐INBS‐0010) and PHENOME (ANR‐11‐ INBS‐0012) French Agence Nationale de la Recherche projects. S.O. was parcially supported by grants RTI2018‐ 099797‐B‐100 (Ministerio de ciencia, InnovaciĂłn y Universidades, Spain) and UMA18‐DEDERJA‐179 (ConsejerĂ­a de EconomĂ­a, Conocimiento, Empresas y Universidades, Junta de AndalucĂ­a, Spain).Peer reviewe

    Special Issue on “fruit metabolism and metabolomics”

    Get PDF
    Over the past 10 years, knowledge about several aspects of fruit metabolism has been greatly improved. Notably, high-throughput metabolomic technologies have allowed quantifying metabolite levels across various biological processes, and identifying the genes that underly fruit development and ripening. This Special Issue is designed to exemplify the current use of metabolomics studies of temperate and tropical fruit for basic research as well as practical applications. It includes articles about different aspects of fruit biochemical phenotyping, fruit metabolism before and after harvest, including primary and specialized metabolisms, and bioactive compounds involved in growth and environmental responses. The effect of genotype, stages of development or fruit tissue on metabolomic profiles and corresponding metabolism regulations are addressed, as well as the combination of other omics with metabolomics for fruit metabolism studies. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.partly funded by MetaboHUB (ANR‐11‐INBS‐0010) and PHENOME (ANR‐11‐ INBS‐0012) French Agence Nationale de la Recherche projects. S.O. was parcially supported by grants RTI2018‐ 099797‐B‐100 (Ministerio de ciencia, InnovaciĂłn y Universidades, Spain) and UMA18‐DEDERJA‐179 (ConsejerĂ­a de EconomĂ­a, Conocimiento, Empresas y Universidades, Junta de AndalucĂ­a, Spain).Peer reviewe

    Fruit Decay to Diseases: Can Induced Resistance and Priming Help?

    Get PDF
    Humanity faces the challenge of having to increase food production to feed an exponentially growing world population, while crop diseases reduce yields to levels that we can no longer afford. Besides, a significant amount of waste is produced after fruit harvest. Fruit decay due to diseases at a post-harvest level can claim up to 50% of the total production worldwide. Currently, the most effective means of disease control is the use of pesticides. However, their use post-harvest is extremely limited due to toxicity. The last few decades have witnessed the development of safer methods of disease control post-harvest. They have all been included in programs with the aim of achieving integrated pest (and disease) management (IPM) to reduce pesticide use to a minimum. Unfortunately, these approaches have failed to provide robust solutions. Therefore, it is necessary to develop alternative strategies that would result in effective control. Exploiting the immune capacity of plants has been described as a plausible route to prevent diseases post-harvest. Post-harvest-induced resistance (IR) through the use of safer chemicals from biological origin, biocontrol, and physical means has also been reported. In this review, we summarize the successful activity of these different strategies and explore the mechanisms behind. We further explore the concept of priming, and how its long-lasting and broad-spectrum nature could contribute to fruit resistance.This work was funded by the BBSRC Future Leader Fellowship BB/P00556X/1 to E.L., by Bordeaux University and INRA, Bordeaux Metabolome Facility and MetaboHUB (ANR-11-INBS-0010 project) to P.P., and by the H2020-MSCA-IF-2016-EPILIPIN-746136 to A.L.Peer reviewe

    Impaired cell growth under ammonium stress explained by modeling the energy cost of vacuole expansion in tomato leaves

    Get PDF
    Ammonium (NH4+)-based fertilization efficiently mitigates the adverse effects of nitrogen fertilization on the environment. However, high concentrations of soil NH4+ provoke growth inhibition, partly caused by the reduction of cell enlargement and associated with modifications of cell composition, such as an increase of sugars and a decrease in organic acids. Cell expansion depends largely on the osmotic-driven enlargement of the vacuole. However, the involvement of subcellular compartmentation in the adaptation of plants to ammonium nutrition has received little attention, until now. To investigate this, tomato (Solanum lycopersicum) plants were cultivated under nitrate and ammonium nutrition and the fourth leaf was harvested at seven developmental stages. The vacuolar expansion was monitored and metabolites and inorganic ion contents, together with intracellular pH, were determined. A data-constrained model was constructed to estimate subcellular concentrations of major metabolites and ions. It was first validated at the three latter developmental stages by comparison with subcellular concentrations obtained experimentally using non-aqueous fractionation. Then, the model was used to estimate the subcellular concentrations at the seven developmental stages and the net vacuolar uptake of solutes along the developmental series. Our results showed ammonium nutrition provokes an acidification of the vacuole and a reduction in the flux of solutes into the vacuoles. Overall, analysis of the subcellular compartmentation reveals a mechanism behind leaf growth inhibition under ammonium stress linked to the higher energy cost of vacuole expansion, as a result of alterations in pH, the inhibition of glycolysis routes and the depletion of organic acids.TP benefited from a cotutelle PhD (University of Bordeaux and University of the Basque Country) and thanks the University of the Basque Country (UPV/EHU, Spain) for his PhD grant during the execution of this work. This research was financially supported by the Basque Government (IT-932-16) and the Spanish Government (BIO2017-84035-R co-funded by Fondo Europeo para el Desarrollo Regional [FEDER]). Analytics were supported by MetaboHUB (ANR-11-INBS-0010) and PHENOME (ANR-11-INBS-0012) projects. Technical support was provided by Cedric Cassan, Ana Renovales and Mandy Bordas. The authors also thank SGIker (UPV/EHU, FEDER, EU) for the technical and human support provided

    Chemical priming of immunity without costs to plant growth

    Get PDF
    - ÎČ-aminobutyric acid (BABA) induces broad-spectrum disease resistance, but also represses plant growth, which has limited its exploitation in crop protection. BABA perception relies on binding to the aspartyl-tRNA synthetase (AspRS) IBI1, which primes the enzyme for secondary defense activity. This study aimed to identify structural BABA analogues that induce resistance without stunting plant growth. - Using site-directed mutagenesis, we demonstrate that the (L)-aspartic acid-binding domain of IBI1 is critical for BABA perception. Based on interaction models of this domain, we screened a small library of structural BABA analogues for growth repression and induced resistance against biotrophic Hyaloperonospora arabidopsidis (Hpa). - A range of resistance-inducing compounds were identified, of which (R)-ÎČ-homoserine (RBH) was the most effective. Surprisingly, RBH acted through different pathways than BABA. RBH-induced resistance (RBH-IR) against Hpa functioned independently salicylic acid, partially relied on camalexin, and was associated with augmented cell wall defense. RBH-IR against necrotrophic Plectosphaerella cucumerina acted via priming of ethylene and jasmonic acid defenses. RBH-IR was also effective in tomato against Botrytis cinerea. Metabolic profiling revealed that RBH, unlike BABA, does not majorly affect plant metabolism. - RBH primes distinct defense pathways against biotrophic and necrotrophic pathogens without stunting plant growth, signifying strong potential for exploitation in crop protection

    Crying out for help with root exudates : adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes

    Get PDF
    Plants employ immunological and ecological strategies to resist biotic stress. Recent evidence suggests that plants adapt to biotic stress by changing their root exudation chemistry to assemble health-promoting microbiomes. This so-called ‘cry-for-help’ hypothesis provides a mechanistic explanation for previously characterized soil feedback responses to plant disease, such as the development of disease-suppressing soils upon successive cultivations of take all-infected wheat. Here, we divide the hypothesis into individual stages and evaluate the evidence for each component. We review how plant immune responses modify root exudation chemistry, as well as what impact this has on microbial activities, and the subsequent plant responses to these activities. Finally, we review the ecological relevance of the interaction, along with its translational potential for future crop protection strategies

    Aspergillus et risque nosocomial en milieu hospitalier

    No full text
    BORDEAUX2-BU Santé (330632101) / SudocSudocFranceF

    Etude de la biosynthese du nad chez les plantes (conséquences physiologiques de sa manipulation chez Arabidopsis thaliana)

    No full text
    Porteur redox intervenant dans nombre de processus métaboliques, le NAD (nicotinamide adénine dinucléotide) est central pour les cellules vivantes. Outre son importance dans le métabolisme oxydoréductif, des données récentes suggÚrent fortement d autres rÎles importants pour le NAD dans la signalisation cellulaire. Un systÚme inductible d enrichissement en NAD en surproduisant la quinolinate phosphoribosyltransférase (QPT) d Escherichia coli chez Arabidopsis thaliana a permis de mettre en évidence l implication du NAD dans les mécanismes spécifiques de défenses qui régissent les interactions plante-pathogÚne. Par ailleurs, une dérégulation de la synthÚse de NAD sur l étape enzymatique catalysée par la QPT endogÚne d Arabidopsis thaliana souligne le rÎle critique du NAD dans la balance C/N des plantes, en particulier en bouleversant l assimilation de l azote en conditions photorespiratoires. Ces travaux nous ouvrent à une nouvelle compréhension des mécanismes de signalisation impliquant le NAD dans les grandes fonctions métaboliques des plantes.Plant development and functions are underpinned by redox reactions which depend on cofactors such as pyridine nucleotides as nicotinamide adenine dinucleotide (NAD). Beside its redox properties, NAD has recently been implicated in cellular signalling. An inducible system based on Escherichia coli quinolinate phosphoribosyltransferase (QPT) overproduction in transgenic Arabidopsis thaliana was set up as a convenient experimental technique to raise NAD content. This build-up highlights the involvement of NAD in plant-pathogen specific defense mechanisms. Furthermore, manipulating endogenous Arabidopsis thaliana QPT levels was used to deregulate NAD production. Such an approach points out the critical role of NAD in C/N interactions by shaking up nitrogen assimilation upon photorespiratory conditions. These results pave the way for a new understanding of signalling mechanisms involving NAD in plants major metabolic functions.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    More to NAD(+) than meets the eye: A regulator of metabolic pools and gene expression in Arabidopsis

    No full text
    UMR BFP - Equipe MĂ©tabolismeInternational audienceSince its discovery more than a century ago, nicotinamide adenine dinucleotide (NAD+) is recognised as a fascinating cornerstone of cellular metabolism. This ubiquitous energy cofactor plays vital roles in metabolic pathways and regulatory processes, a fact emphasised by the essentiality of a balanced NAD+ metabolism for normal plant growth and development. Research on the role of NAD in plants has been predominantly carried out in the model plant Arabidopsis thaliana (Arabidopsis) with emphasis on the redox properties and cellular signalling functions of the metabolite. This review examines the current state of knowledge concerning how NAD can regulate both metabolic pools and gene expression in Arabidopsis. Particular focus is placed on recent studies highlighting the complexity of metabolic regulations involving NAD, more particularly in the mitochondrial compartment, and of signalling roles with respect to interactions with environmental fluctuations most specifically those involving plant immunity
    corecore