48 research outputs found

    Viscosity of fluid membranes measured from vesicle deformation

    Full text link
    Viscosity is a key mechanical property of cell membranes that controls time-dependent processes such as membrane deformation and diffusion of embedded inclusions. Despite its importance, membrane viscosity remains poorly characterized because existing methods rely on complex experimental designs and/or analyses. Here, we describe a facile method to determine the viscosity of bilayer membranes from the transient deformation of giant unilamellar vesicles induced by a uniform electric field. The method is non-invasive, easy to implement, probe-independent, high-throughput, and sensitive enough to discern membrane viscosity of different lipid types, lipid phases, and polymers in a wide range, from 108^{-8} to 104^{-4} Pa.s.m. It enables fast and consistent collection of data that will advance understanding of biomembrane dynamics

    Fluctuation spectroscopy of giant unilamellar vesicles using confocal and phase contrast microscopy

    Full text link
    A widely used method to measure the bending rigidity of bilayer membranes is fluctuation spectroscopy, which analyses the thermally-driven membrane undulations of giant unilamellar vesicles recorded with either phase-contrast or confocal microscopy. Here, we analyze the fluctuations of the same vesicle using both techniques and obtain consistent values for the bending modulus. We discuss the factors that may lead to discrepancies

    Assessing membrane material properties from the response of giant unilamellar vesicles to electric fields

    Get PDF
    Knowledge of the material properties of membranes is crucial to understanding cell viability and physiology. A number of methods have been developed to probe membranes in vitro, utilizing the response of minimal biomimetic membrane models to an external perturbation. In this review, we focus on techniques employing giant unilamellar vesicles (GUVs), model membrane systems, often referred to as minimal artificial cells because of the potential they offer to mimick certain cellular features. When exposed to electric fields, GUV deformation, dynamic response and poration can be used to deduce properties such as bending rigidity, pore edge tension, membrane capacitance, surface shear viscosity, excess area and membrane stability. We present a succinct overview of these techniques, which require only simple instrumentation, available in many labs, as well as reasonably facile experimental implementation and analysis. Graphical abstrac

    Development and results of the epilepsy surgery in Armenia: hope for a better future

    Get PDF
    PurposeWe present our experience with the national epilepsy surgery program in Armenia by tracing the development of epilepsy surgery in the largest pediatric neurology department at “Arabkir” Medical Center. This development was possible on the basis of a strong collaboration with the Epilepsy Surgery center at the University Hospital “Sofia St. Ivan Rilski,” Sofia, Bulgaria.Materials and methodsOur material included 28 consecutive patients with lesional drug-resistant epilepsy evaluated. All patients underwent 3 T MRI and Video-EEG monitoring. Brain 18FDG-PET was done in 13 patients in St. Petersburg. Fifteen patients (53%) had preoperative neuropsychological examination before surgery. All operations were done by the same neurosurgical team on site in Arabkir Hospital.ResultsThe majority of the patients in our cohort benefited from the epilepsy surgery as 25 (89%) are free of disabling seizures (Engel class I) and three patients (11%) did not improve substantially (Engel class IV). Eleven patients (39%) are already ASM-free after surgery, 4 (14%) are on monotherapy, 11(39%) get two drugs, and 2(7%) are on polytherapy, one of them still continues having seizures. In 12 patients (43%), we were able either to withdraw therapy or to decrease one of the ASM.ConclusionWe believe that, although small, yet encompassing patients along the usual age spectrum and with the most frequent pathologies of drug-resistant epilepsies, our experience can serve as a model to develop epilepsy surgery in countries with limited resources

    Electrohydrodynamic model of vesicle deformation in alternating electric fields

    Full text link
    We develop an analytical theory to explain the experimentally-observed morphological transitions of giant vesicles induced by AC electric fields (1). The model treats the inner and suspending media as lossy dielectrics, while the membrane as an ion-impermeable flexible incompressible-fluid sheet. The vesicle shape is obtained by balancing electric, hydrodynamic, and bending stresses exerted on the membrane. Considering a nearly spherical vesicle, the solution to the electrohydrodynamic problem is obtained as a regular perturbation expansion in the excess area. The theory predicts that stationary vesicle deformation depends on field frequency and conductivity conditions. If the inner fluid is more conducting than the suspending medium, the vesicle always adopts a prolate shape. In the opposite case, the vesicle undergoes a transition from a prolate to oblate ellipsoid at a critical frequency, which the theory identifies with the inverse membrane charging time. At frequencies higher than the inverse Maxwell-Wagner polarization time, the electrohydrodynamic stresses become too small to alter the vesicle's quasi-spherical rest shape. The analysis shows that the evolution towards the stationary vesicle deformation strongly depends on membrane properties such as viscosity. The model can be applied to rationalize the transient and steady deformation of biological cells in electric fields
    corecore