10 research outputs found

    Percutaneous Wearable Biosensors: A Brief History and Systems Perspective

    Get PDF
    Wearable biosensors are envisioned to disrupt both delivery and accessibility of healthcare by providing real‐time, continuous monitoring of informative and predictive physiological markers in convenient, user‐friendly, and portable designs. In recent years, there has been myriad demonstrations of biosensor‐integrated clothing and skin‐borne biosensor patches, enabled by device miniaturization, reduced power consumption, and new biosensing chemistries. Despite these impressive demonstrations, most consumer‐grade wearables have been limited to biophotonic and biopotential sensing methods to extrapolate information such as pulse, blood oxygenation, and electrocardiograms. The only commercial example of wearable electrochemical sensing methods is for glucose monitoring. However, there is a growing interest in developing percutaneous biosensors for monitoring in interstitial fluid (ISF), which offers direct access to popular analytes such as glucose, lactate, and urea, as well as new targets like hormones, antibodies, and even medications. Herein, a brief context for the current status of wearable biosensors is provided and assess the major engineering successes and pitfalls of percutaneous biosensors over the past five years, with a view to identifying areas for further developments that will enable deployable, clinical‐ or consumer‐grade systems

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    The James Webb Space Telescope Mission

    No full text
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4 m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5 m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 yr, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit
    corecore