85 research outputs found

    Development of a comparative genomic fingerprinting assay for rapid and high resolution genotyping of Arcobacter butzleri

    Get PDF
    Sherpa Romeo green journal. Open access, distributed under the terms of the Creative Commons Attribution (CC-BY) License.Background Molecular typing methods are critical for epidemiological investigations, facilitating disease outbreak detection and source identification. Study of the epidemiology of the emerging human pathogen Arcobacter butzleri is currently hampered by the lack of a subtyping method that is easily deployable in the context of routine epidemiological surveillance. In this study we describe a comparative genomic fingerprinting (CGF) method for high-resolution and high-throughput subtyping of A. butzleri. Comparative analysis of the genome sequences of eleven A. butzleri strains, including eight strains newly sequenced as part of this project, was employed to identify accessory genes suitable for generating unique genetic fingerprints for high-resolution subtyping based on gene presence or absence within a strain. Results A set of eighty-three accessory genes was used to examine the population structure of a dataset comprised of isolates from various sources, including human and non-human animals, sewage, and river water (n=156). A streamlined assay (CGF40) based on a subset of 40 genes was subsequently developed through marker optimization. High levels of profile diversity (121 distinct profiles) were observed among the 156 isolates in the dataset, and a high Simpson’s Index of Diversity (ID) observed (ID > 0.969) indicate that the CGF40 assay possesses high discriminatory power. At the same time, our observation that 115 isolates in this dataset could be assigned to 29 clades with a profile similarity of 90% or greater indicates that the method can be used to identify clades comprised of genetically similar isolates. Conclusions The CGF40 assay described herein combines high resolution and repeatability with high throughput for the rapid characterization of A. butzleri strains. This assay will facilitate the study of the population structure and epidemiology of A. butzleri.Ye

    Enhanced terrestrial carbon export from East Antarctica during the early Eocene

    Get PDF
    Terrestrial organic carbon (TerrOC) acts as an important CO2 sink when transported via rivers to the ocean and sequestered in coastal marine sediments. This mechanism might help to modulate atmospheric CO2 levels over short- and long timescales (103 to 106 years), but its importance during past warm climates remains unknown. Here we use terrestrial biomarkers preserved in coastal marine sediment samples from Wilkes Land, East Antarctica (~67°S) to quantify TerrOC burial during the early Eocene (~54.4 to 51.5 Ma). Terrestrial biomarker distributions indicate the delivery of plant-, soil- and peat-derived organic carbon (OC) into the marine realm. Mass accumulation rates of plant- (long-chain n-alkane) and soil-derived (hopane) biomarkers dramatically increase between the earliest Eocene (~54 Ma) and the early Eocene Climatic Optimum (EECO; ~53 Ma). This coincides with increased OC mass accumulation rates and indicates enhanced TerrOC burial during the EECO. Leaf wax δ 2H values indicate that the EECO was characterised by wetter conditions relative to the earliest Eocene, suggesting that hydroclimate exerts a first-order control on TerrOC export. Our results indicate that TerrOC burial in coastal marine sediments UOB Open could have acted as an important negative feedback mechanism during the early Eocene, but also during other warm climate intervals

    An Essential Role for DYF-11/MIP-T3 in Assembling Functional Intraflagellar Transport Complexes

    Get PDF
    MIP-T3 is a human protein found previously to associate with microtubules and the kinesin-interacting neuronal protein DISC1 (Disrupted-in-Schizophrenia 1), but whose cellular function(s) remains unknown. Here we demonstrate that the C. elegans MIP-T3 ortholog DYF-11 is an intraflagellar transport (IFT) protein that plays a critical role in assembling functional kinesin motor-IFT particle complexes. We have cloned a loss of function dyf-11 mutant in which several key components of the IFT machinery, including Kinesin-II, as well as IFT subcomplex A and B proteins, fail to enter ciliary axonemes and/or mislocalize, resulting in compromised ciliary structures and sensory functions, and abnormal lipid accumulation. Analyses in different mutant backgrounds further suggest that DYF-11 functions as a novel component of IFT subcomplex B. Consistent with an evolutionarily conserved cilia-associated role, mammalian MIP-T3 localizes to basal bodies and cilia, and zebrafish mipt3 functions synergistically with the Bardet-Biedl syndrome protein Bbs4 to ensure proper gastrulation, a key cilium- and basal body-dependent developmental process. Our findings therefore implicate MIP-T3 in a previously unknown but critical role in cilium biogenesis and further highlight the emerging role of this organelle in vertebrate development

    Telephone based self-management support by 'lay health workers' and 'peer support workers' to prevent and manage vascular diseases: a systematic review and meta-analysis

    Get PDF
    Background: Improved prevention and management of vascular disease is a global priority. Non-health care professionals (such as, ‘lay health workers’ and ‘peer support workers’) are increasingly being used to offer telephone support alongside that offered by conventional services, to reach disadvantaged populations and to provide more efficient delivery of care. However, questions remain over the impact of such interventions, particularly on a wider range of vascular related conditions (such as, chronic kidney disease), and it is unclear how different types of telephone support impact on outcome. This study assessed the evidence on the effectiveness and cost-effectiveness of telephone self-management interventions led by ‘lay health workers’ and ‘peer support workers’ for patients with vascular disease and long-term conditions associated with vascular disease. Methods: Systematic review of randomised controlled trials. Three electronic databases were searched. Two authors independently extracted data according to the Cochrane risk of bias tool. Random effects meta-analysis was used to pool outcome measures. Results: Ten studies were included, primarily based in community settings in the United States; with participants who had diabetes; and used ‘peer support workers’ that shared characteristics with patients. The included studies were generally rated at risk of bias, as many methodological criteria were rated as ‘unclear’ because of a lack of information. Overall, peer telephone support was associated with small but significant improvements in self-management behaviour (SMD = 0.19, 95% CI 0.05 to 0.33, I2 = 20.4%) and significant reductions in HbA1c level (SMD = -0.26, 95% CI −0.41 to −0.11, I2 = 47.6%). There was no significant effect on mental health quality of life (SMD = 0.03, 95% CI −0.12 to 0.18, I2 = 0%). Data on health care utilisation were very limited and no studies reported cost effectiveness analyses. Conclusions: Positive effects were found for telephone self-management interventions via ‘lay workers’ and ‘peer support workers’ for patients on diabetes control and self-management outcomes, but the overall evidence base was limited in scope and quality. Well designed trials assessing non-healthcare professional delivered telephone support for the prevention and management of vascular disease are needed to identify the content of effective components on health outcomes, and to assess cost effectiveness, to determine if such interventions are potentially useful alternatives to professionally delivered care

    DHA Supplemented in Peptamen Diet Offers No Advantage in Pathways to Amyloidosis: Is It Time to Evaluate Composite Lipid Diet?

    Get PDF
    Numerous reports have documented the beneficial effects of dietary docosahexaenoic acid (DHA) on beta-amyloid production and Alzheimer's disease (AD). However, none of these studies have examined and compared DHA, in combination with other dietary nutrients, for its effects on plaque pathogenesis. Potential interactions of DHA with other dietary nutrients and fatty acids are conventionally ignored. Here we investigated DHA with two dietary regimes; peptamen (pep+DHA) and low fat diet (low fat+DHA). Peptamen base liquid diet is a standard sole-source nutrition for patients with gastrointestinal dysfunction. Here we demonstrate that a robust AD transgenic mouse model shows an increased tendency to produce beta-amyloid peptides and amyloid plaques when fed a pep+DHA diet. The increase in beta-amyloid peptides was due to an elevated trend in the levels of beta-secretase amyloid precursor protein (APP) cleaving enzyme (BACE), the proteolytic C-terminal fragment beta of APP and reduced levels of insulin degrading enzyme that endoproteolyse beta-amyloid. On the contrary, TgCRND8 mice on low fat+DHA diet (based on an approximately 18% reduction of fat intake) ameliorate the production of abeta peptides and consequently amyloid plaques. Our work not only demonstrates that DHA when taken with peptamen may have a tendency to confer a detrimental affect on the amyloid plaque build up but also reinforces the importance of studying composite lipids or nutrients rather than single lipids or nutrients for their effects on pathways important to plaque development

    Photochemically-produced SO2_2 in the atmosphere of WASP-39b

    Get PDF
    Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability. However, no unambiguous photochemical products have been detected in exoplanet atmospheres to date. Recent observations from the JWST Transiting Exoplanet Early Release Science Program found a spectral absorption feature at 4.05 μ\mum arising from SO2_2 in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ_J) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of \sim1100 K. The most plausible way of generating SO2_2 in such an atmosphere is through photochemical processes. Here we show that the SO2_2 distribution computed by a suite of photochemical models robustly explains the 4.05 μ\mum spectral feature identified by JWST transmission observations with NIRSpec PRISM (2.7σ\sigma) and G395H (4.5σ\sigma). SO2_2 is produced by successive oxidation of sulphur radicals freed when hydrogen sulphide (H2_2S) is destroyed. The sensitivity of the SO2_2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of \sim10×\times solar. We further point out that SO2_2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.Comment: 39 pages, 14 figures, accepted to be published in Natur

    Cellular Proteins in Influenza Virus Particles

    Get PDF
    Virions are thought to contain all the essential proteins that govern virus egress from the host cell and initiation of replication in the target cell. It has been known for some time that influenza virions contain nine viral proteins; however, analyses of other enveloped viruses have revealed that proteins from the host cell can also be detected in virions. To address whether the same is true for influenza virus, we used two complementary mass spectrometry approaches to perform a comprehensive proteomic analysis of purified influenza virus particles. In addition to the aforementioned nine virus-encoded proteins, we detected the presence of 36 host-encoded proteins. These include both cytoplasmic and membrane-bound proteins that can be grouped into several functional categories, such as cytoskeletal proteins, annexins, glycolytic enzymes, and tetraspanins. Interestingly, a significant number of these have also been reported to be present in virions of other virus families. Protease treatment of virions combined with immunoblot analysis was used to verify the presence of the cellular protein and also to determine whether it is located in the core of the influenza virus particle. Immunogold labeling confirmed the presence of membrane-bound host proteins on the influenza virus envelope. The identification of cellular constituents of influenza virions has important implications for understanding the interactions of influenza virus with its host and brings us a step closer to defining the cellular requirements for influenza virus replication. While not all of the host proteins are necessarily incorporated specifically, those that are and are found to have an essential role represent novel targets for antiviral drugs and for attenuation of viruses for vaccine purposes

    Human Genetics in Rheumatoid Arthritis Guides a High-Throughput Drug Screen of the CD40 Signaling Pathway

    Get PDF
    Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P = 1.4×10(−9)). Second, we demonstrate that subjects homozygous for the RA risk allele have ∼33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P = 10(−9)), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-κB transcription factor. Finally, we develop a high-throughput NF-κB luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA–approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-κB signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in complex traits such as RA
    corecore