10 research outputs found

    Comment to the paper : Collapse of the vortex-lattice inductance and shear modulus at the melting transition in untwinned YBa2_2Cu3_3O7_7, by Matl \QTR{em}{et al.}

    Full text link
    In a recent paper, Matl et al present a high-frequency study of the complex resistivity of a pinned vortex lattice in YBaCuO . They focus on the inductive-to-resistive transition which is investigated as a function of temperature at a constant field B0=2B_0=2 T, so that the transition is associated with the vanishing of vortex pinning strength. To our view, their conclusions rely on a rather brittle experimental body and the collapse of C66 results from an involved analysis of the finite frequency corrections to ρ(ω)\rho (\omega). These corrections are not necessary since the complex frequency spectrum has been previously interpreted by the two modes model, first proposed for low Tc materials. We think that it is more adequate to interpret the present data and should be at least considered.Comment: 4pages tex. submitted to PR

    Collapse of the vortex-lattice inductance and shear modulus at the melting transition in untwinned YBa2Cu3O7\rm YBa_2Cu_3O_7

    Full text link
    The complex resistivity ρ^(ω)\hat{\rho}(\omega) of the vortex lattice in an untwinned crystal of 93-K YBa2Cu3O7\rm YBa_2Cu_3O_7 has been measured at frequencies ω/2π\omega/2\pi from 100 kHz to 20 MHz in a 2-Tesla field Hc\bf H\parallel c, using a 4-probe RF transmission technique that enables continuous measurements versus ω\omega and temperature TT. As TT is increased, the inductance Ls(ω)=Imρ^(ω)/ω{\cal L}_s(\omega) ={\rm Im} \hat{\rho}(\omega)/ \omega increases steeply to a cusp at the melting temperature TmT_m, and then undergoes a steep collapse consistent with vanishing of the shear modulus c66c_{66}. We discuss in detail the separation of the vortex-lattice inductance from the `volume' inductance, and other skin-depth effects. To analyze the spectra, we consider a weakly disordered lattice with a low pin density. Close fits are obtained to ρ1(ω)\rho_1(\omega) over 2 decades in ω\omega. Values of the pinning parameter κ\kappa and shear modulus c66c_{66} obtained show that c66c_{66} collapses by over 4 decades at TmT_m, whereas κ\kappa remains finite.Comment: 11 pages, 8 figures, Phys. Rev. B, in pres

    Head-to-head comparison of direct-input RT-PCR and RT-LAMP against RT-qPCR on extracted RNA for rapid SARS-CoV-2 diagnostics

    Full text link
    SUMMARYViral pandemics, such as Covid-19, pose serious threats to human societies. To control the spread of highly contagious viruses such as SARS-CoV-2, effective test-trace-isolate strategies require population-wide, systematic testing. Currently, RT-qPCR on extracted RNA is the only broadly accepted test for SARS-CoV-2 diagnostics, which bears the risk of supply chain bottlenecks, often exaggerated by dependencies on proprietary reagents. Here, we directly compare the performance of gold standard diagnostic RT-qPCR on extracted RNA to direct input RT-PCR, RT-LAMP and bead-LAMP on 384 primary patient samples collected from individuals with suspected Covid-19 infection. With a simple five minute crude sample inactivation step and one hour of total reaction time, we achieve assay sensitivities of 98% (direct RT-PCR), 93% (bead-LAMP) and 82% (RT-LAMP) for clinically relevant samples (diagnostic RT-qPCR Ct &lt;35) and a specificity of &gt;98%. For direct RT-PCR, our data further demonstrate a perfect agreement between real-time and end-point measurements, which allow a simple binary classification similar to the powerful visual readout of colorimetric LAMP assays. Our study provides highly sensitive and specific, easy to implement, rapid and cost-effective alternatives to diagnostic RT-qPCR tests.</jats:p

    Multiplexed detection of SARS-CoV-2 and other respiratory infections in high throughput by SARSeq

    No full text
    AbstractThe COVID-19 pandemic has demonstrated the need for massively-parallel, cost-effective tests monitoring viral spread. Here we present SARSeq, saliva analysis by RNA sequencing, a method to detect SARS-CoV-2 and other respiratory viruses on tens of thousands of samples in parallel. SARSeq relies on next generation sequencing of multiple amplicons generated in a multiplexed RT-PCR reaction. Two-dimensional, unique dual indexing, using four indices per sample, enables unambiguous and scalable assignment of reads to individual samples. We calibrate SARSeq on SARS-CoV-2 synthetic RNA, virions, and hundreds of human samples of various types. Robustness and sensitivity were virtually identical to quantitative RT-PCR. Double-blinded benchmarking to gold standard quantitative-RT-PCR performed by human diagnostics laboratories confirms this high sensitivity. SARSeq can be used to detect Influenza A and B viruses and human rhinovirus in parallel, and can be expanded for detection of other pathogens. Thus, SARSeq is ideally suited for differential diagnostic of infections during a pandemic.</jats:p

    Abstracts

    Full text link

    Literatur

    No full text
    corecore