133 research outputs found

    Heteroclinic Ratchets in a System of Four Coupled Oscillators

    Full text link
    We study an unusual but robust phenomenon that appears in an example system of four coupled phase oscillators. We show that the system can have a robust attractor that responds to a specific detuning between certain pairs of the oscillators by a breaking of phase locking for arbitrary positive detunings but not for negative detunings. As the dynamical mechanism behind this is a particular type of heteroclinic network, we call this a 'heteroclinic ratchet' because of its dynamical resemblance to a mechanical ratchet

    Pulmonary Hypertension and Other Potentially Fatal Pulmonary Complications in Systemic Juvenile Idiopathic Arthritis

    Full text link
    Objective Systemic juvenile idiopathic arthritis (JIA) is characterized by fevers, rash, and arthritis, for which interleukin‐1 (IL‐1) and IL‐6 inhibitors appear to be effective treatments. Pulmonary arterial hypertension (PAH), interstitial lung disease (ILD), and alveolar proteinosis (AP) have recently been reported with increased frequency in systemic JIA patients. Our aim was to characterize and compare systemic JIA patients with these complications to a larger cohort of systemic JIA patients. Methods Systemic JIA patients who developed PAH, ILD, and/or AP were identified through an electronic Listserv and their demographic, systemic JIA, and pulmonary disease characteristics as well as their medication exposure information were collected. Patients with these features were compared to a cohort of systemic JIA patients enrolled in the Childhood Arthritis and Rheumatology Research Alliance (CARRA) registry. Results The patients (n = 25) were significantly ( P < 0.05) more likely than the CARRA registry cohort (n = 389) to be female; have more systemic features; and have been exposed to an IL‐1 inhibitor, tocilizumab, corticosteroids, intravenous immunoglobulin, cyclosporine, and cyclophosphamide. Twenty patients (80%) were diagnosed with pulmonary disease after 2004. Twenty patients (80%) had macrophage activation syndrome (MAS) during their disease course and 15 patients (60%) had MAS at pulmonary diagnosis. Sixteen patients had PAH, 5 had AP, and 7 had ILD. Seventeen patients (68%) were taking or recently discontinued (<1 month) a biologic agent at pulmonary symptom onset; 12 patients (48%) were taking anti–IL‐1 therapy (primarily anakinra). Seventeen patients (68%) died at a mean of 10.2 months from the diagnosis of pulmonary complications. Conclusion PAH, AP, and ILD are underrecognized complications of systemic JIA that are frequently fatal. These complications may be the result of severe uncontrolled systemic disease activity and may be influenced by medication exposure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97453/1/21889_ftp.pd

    Glycobiology of cell death: when glycans and lectins govern cell fate

    Get PDF
    Although one typically thinks of carbohydrates as associated with cell growth and viability, glycosylation also has an integral role in many processes leading to cell death. Glycans, either alone or complexed with glycan-binding proteins, can deliver intracellular signals or control extracellular processes that promote initiation, execution and resolution of cell death programs. Herein, we review the role of glycans and glycan-binding proteins as essential components of the cell death machinery during physiologic and pathologic settings.Fil: Lichtenstein, Rachel. Ben-Gurion University of the Negev. Faculty of Engineering. Department of Biotechnology Engineering; IsraelFil: Rabinovich, Gabriel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Departamento de Quimica Biologica; Argentin

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Non-Invasive Detection of a Small Number of Bioluminescent Cancer Cells In Vivo

    Get PDF
    Early detection of tumors can significantly improve the outcome of tumor treatment. One of the most frequently asked questions in cancer imaging is how many cells can be detected non-invasively in a live animal. Although many factors limit such detection, increasing the light emission from cells is one of the most effective ways of overcoming these limitations. Here, we describe development and utilization of a lentiviral vector containing enhanced firefly luciferase (luc2) gene. The resulting single cell clones of the mouse mammary gland tumor (4T1-luc2) showed stable light emission in the range of 10,000 photons/sec/cell. In some cases individual 4T1-luc2 cells inserted under the skin of a nu/nu mouse could be detected non-invasively using a cooled CCD camera in some cases. In addition, we showed that only few cells are needed to develop tumors in these mice and tumor progression can be monitored right after the cells are implanted. Significantly higher luciferase activity in these cells allowed us to detect micrometastases in both, syngeneic Balb/c and nu/nu mice

    Identification of the molecular signatures integral to regenerating photoreceptors in the retina of the zebra fish

    Get PDF
    Investigating neuronal and photoreceptor regeneration in the retina of zebra fish has begun to yield insights into both the cellular and molecular means by which this lower vertebrate is able to repair its central nervous system. However, knowledge about the signaling molecules in the local microenvironment of a retinal injury and the transcriptional events they activate during neuronal death and regeneration is still lacking. To identify genes involved in photoreceptor regeneration, we combined light-induced photoreceptor lesions, laser-capture microdissection of the outer nuclear layer (ONL) and analysis of gene expression to characterize transcriptional changes for cells in the ONL as photoreceptors die and are regenerated. Using this approach, we were able to characterize aspects of the molecular signature of injured and dying photoreceptors, cone photoreceptor progenitors, and microglia within the ONL. We validated changes in gene expression and characterized the cellular expression for three novel, extracellular signaling molecules that we hypothesize are involved in regulating regenerative events in the retina

    Combined Tumor Cell-Based Vaccination and Interleukin-12 Gene Therapy Polarizes the Tumor Microenvironment in Mice

    Get PDF
    Tumor progression depends on tumor milieu, which influences neovasculature formation and immunosuppression. Combining immunotherapy with antiangiogenic/antivascular therapy might be an effective therapeutic approach. The aim of our study was to elaborate an anticancer therapeutic strategy based on the induction of immune response which leads to polarization of tumor milieu. To achieve this, we developed a tumor cell-based vaccine. CAMEL peptide was used as a B16-F10 cell death-inducing agent. The lysates were used as a vaccine to immunize mice bearing B16-F10 melanoma tumors. To further improve the therapeutic effect of the vaccine, we combined it with interleukin (IL)-12 gene therapy. IL-12, a cytokine with antiangiogenic properties, activates nonspecific and specific immune responses. We observed that combined therapy is significantly more effective (as compared with monotherapies) in inhibiting tumor growth. Furthermore, the tested combination polarizes the tumor microenvironment, which results in a switch from a proangiogenic/immunosuppressive to an antiangiogenic/immunostimulatory one. The switch manifests itself as a decreased number of tumor blood vessels, increased levels of tumor-infiltrating CD4+, CD8+ and NK cells, as well as lower level of suppressor lymphocytes (Treg). Our results suggest that polarizing tumor milieu by such combined therapy does inhibit tumor growth and seems to be a promising therapeutic strategy

    Exploiting antitumor immunity to overcome relapse and improve remission duration

    Get PDF
    Cancer survivors often relapse due to evolving drug-resistant clones and repopulating tumor stem cells. Our preclinical study demonstrated that terminal cancer patient’s lymphocytes can be converted from tolerant bystanders in vivo into effective cytotoxic T-lymphocytes in vitro killing patient’s own tumor cells containing drug-resistant clones and tumor stem cells. We designed a clinical trial combining peginterferon α-2b with imatinib for treatment of stage III/IV gastrointestinal stromal tumor (GIST) with the rational that peginterferon α-2b serves as danger signals to promote antitumor immunity while imatinib’s effective tumor killing undermines tumor-induced tolerance and supply tumor-specific antigens in vivo without leukopenia, thus allowing for proper dendritic cell and cytotoxic T-lymphocyte differentiation toward Th1 response. Interim analysis of eight patients demonstrated significant induction of IFN-γ-producing-CD8+, -CD4+, -NK cell, and IFN-γ-producing-tumor-infiltrating-lymphocytes, signifying significant Th1 response and NK cell activation. After a median follow-up of 3.6 years, complete response (CR) + partial response (PR) = 100%, overall survival = 100%, one patient died of unrelated illness while in remission, six of seven evaluable patients are either in continuing PR/CR (5 patients) or have progression-free survival (PFS, 1 patient) exceeding the upper limit of the 95% confidence level of the genotype-specific-PFS of the phase III imatinib-monotherapy (CALGB150105/SWOGS0033), demonstrating highly promising clinical outcomes. The current trial is closed in preparation for a larger future trial. We conclude that combination of targeted therapy and immunotherapy is safe and induced significant Th1 response and NK cell activation and demonstrated highly promising clinical efficacy in GIST, thus warranting development in other tumor types

    Caenorhabditis elegans N-glycan Core β-galactoside Confers Sensitivity towards Nematotoxic Fungal Galectin CGL2

    Get PDF
    The physiological role of fungal galectins has remained elusive. Here, we show that feeding of a mushroom galectin, Coprinopsis cinerea CGL2, to Caenorhabditis elegans inhibited development and reproduction and ultimately resulted in killing of this nematode. The lack of toxicity of a carbohydrate-binding defective CGL2 variant and the resistance of a C. elegans mutant defective in GDP-fucose biosynthesis suggested that CGL2-mediated nematotoxicity depends on the interaction between the galectin and a fucose-containing glycoconjugate. A screen for CGL2-resistant worm mutants identified this glycoconjugate as a Galβ1,4Fucα1,6 modification of C. elegans N-glycan cores. Analysis of N-glycan structures in wild type and CGL2-resistant nematodes confirmed this finding and allowed the identification of a novel putative glycosyltransferase required for the biosynthesis of this glycoepitope. The X-ray crystal structure of a complex between CGL2 and the Galβ1,4Fucα1,6GlcNAc trisaccharide at 1.5 Å resolution revealed the biophysical basis for this interaction. Our results suggest that fungal galectins play a role in the defense of fungi against predators by binding to specific glycoconjugates of these organisms
    corecore