8 research outputs found

    RiBaSE : a pilot for testing the OGC web services integration of water-related information and models

    Get PDF
    The design of an interoperability experiment to demonstrate how current ICT-based tools and water data can work in combination with geospatial web services is presented. This solution is being tested in three transboundary river basins: Scheldt, Maritsa and Severn. The purpose of this experiment is to assess the effectiveness of OGC standards for describing status and dynamics of surface water in river basins, to demonstrate their applicability and finally to increase awareness of emerging hydrological standards as WaterML 2.0. Also, this pilot will help in identifying potential gaps in OGC standards in water domain applications, applied to a flooding scenario in present work

    RiBaSE : a pilot for testing the OGC web services integration of water-related information and models

    No full text
    The design of an interoperability experiment to demonstrate how current ICT-based tools and water data can work in combination with geospatial web services is presented. This solution is being tested in three transboundary river basins: Scheldt, Maritsa and Severn. The purpose of this experiment is to assess the effectiveness of OGC standards for describing status and dynamics of surface water in river basins, to demonstrate their applicability and finally to increase awareness of emerging hydrological standards as WaterML 2.0. Also, this pilot will help in identifying potential gaps in OGC standards in water domain applications, applied to a flooding scenario in present work

    Radiometric Correction of Simultaneously Acquired Landsat-7/Landsat-8 and Sentinel-2A Imagery Using Pseudoinvariant Areas (PIA): Contributing to the Landsat Time Series Legacy

    Get PDF
    The use of Pseudoinvariant Areas (PIA) makes it possible to carry out a reasonably robust and automatic radiometric correction for long time series of remote sensing imagery, as shown in previous studies for large data sets of Landsat MSS, TM, and ETM+ imagery. In addition, they can be employed to obtain more coherence among remote sensing data from different sensors. The present work validates the use of PIA for the radiometric correction of pairs of images acquired almost simultaneously (Landsat-7 (ETM+) or Landsat-8 (OLI) and Sentinel-2A (MSI)). Four pairs of images from a region in SW Spain, corresponding to four different dates, together with field spectroradiometry measurements collected at the time of satellite overpass were used to evaluate a PIA-based radiometric correction. The results show a high coherence between sensors (r2 = 0.964) and excellent correlations to in-situ data for the MiraMon implementation (r2 > 0.9). Other methodological alternatives, ATCOR3 (ETM+, OLI, MSI), SAC-QGIS (ETM+, OLI, MSI), 6S-LEDAPS (ETM+), 6S-LaSRC (OLI), and Sen2Cor-SNAP (MSI), were also evaluated. Almost all of them, except for SAC-QGIS, provided similar results to the proposed PIA-based approach. Moreover, as the PIA-based approach can be applied to almost any image (even to images lacking of extra atmospheric information), it can also be used to solve the robust integration of data from new platforms, such as Landsat-8 or Sentinel-2, to enrich global data acquired since 1972 in the Landsat program. It thus contributes to the program’s continuity, a goal of great interest for the environmental, scientific, and technical communityPeer reviewe
    corecore