71 research outputs found

    The merging cluster of galaxies Abell 3376: an optical view

    Full text link
    Abell 3376 is a merging cluster of galaxies at redshift z=0.046, famous mostly for its giant radio arcs, and shows an elongated and highly substructured X-ray emission, but has not been analysed in detail at optical wavelengths. We have obtained wide field images of Abell 3376 in the B band and derive the GLF applying a statistical subtraction of the background in three regions: a circle of 0.29 deg radius (1.5 Mpc) encompassing the whole cluster, and two circles centered on each of the two brightest galaxies (BCG2, northeast, coinciding with the peak of X-ray emission, and BCG1, southwest) of radii 0.15 deg (0.775 Mpc). We also compute the GLF in the zone around BCG1, which is covered by the WINGS survey in the B and V bands, by selecting cluster members in the red sequence in a (B-V) versus V diagram. Finally, we discuss the dynamical characteristics of the cluster implied by a Serna & Gerbal analysis. The GLFs are not well fit by a single Schechter function, but satisfactory fits are obtained by summing a Gaussian and a Schechter function. The GLF computed by selecting galaxies in the red sequence in the region surrounding BCG1 can also be fit by a Gaussian plus a Schechter function. An excess of galaxies in the brightest bins is detected in the BCG1 and BCG2 regions. The dynamical analysis based on the Serna & Gerbal method shows the existence of a main structure of 82 galaxies which can be subdivided into two main substructures of 25 and 6 galaxies. A smaller structure of 6 galaxies is also detected. The B band GLFs of Abell 3376 are clearly perturbed, as already found in other merging clusters. The dynamical properties are consistent with the existence of several substructures, in agreement with a previously published X-ray analysis.Comment: 11 pages, 12 figures, accepted for publication in A&

    Seiches in lateral cavities with simplified planform geometry : oscillation modes and synchronization with the vortex shedding

    Get PDF
    Lateral cavities adjacent to open-channel flows are dead zones located on one side of a main stream. With an approaching flow with a high (subcritical) Froude number, the free-surface of the dead-zone oscillates with high amplitudes and generates a so-called seiche. This configuration is reproduced in a rectangular cavity (with an interface length equal to the main stream channel width) in which the impact of the three dimensionless parameters (Froude number, dimensionless water depth, and geometrical aspect ratio) affecting the seiche is studied experimentally. For all configurations, a natural mode of the cavity is observed, this mode being either longitudinal or transverse, except in the case of a square cavity where bi-directional seiching occurs. Moreover, we show that while the approaching Froude number (0.55 < Fr < 0.7) and dimensionless water depth do not affect the oscillation mode, the selected natural mode is strongly dependent on the geometrical aspect ratio of the cavity. For narrow cavities (small [W+b]/b with W and b the cavity and channel widths, respectively), a longitudinal mode occurs while for wider cavities transverse modes occur, with an increasing number of nodes as the width of the cavity increases. Finally, measuring the time-resolved 2-dimensional field of free-surface deformation in the cavity and the adjacent main stream permits us to identify the vortices shed along the mixing layer at the cavity/main stream interface and thus to analyze the synchronization between the surface oscillation and vortex shedding (at the upstream edge) and impinging (at the downstream edge) processes

    First g(2+) measurement on neutron-rich 72 Zn, and the high-velocity transient field technique for radioactive heavy-ion beams

    Get PDF
    The high-velocity transient-field (HVTF) technique was used to measure the g factor of the 2+ state of 72Zn produced as a radioactive beam. The transient-field strength was probed at high velocity in ferromagnetic iron and gadolinium hosts using 76Ge beams. The potential of the HVTF method is demonstrated and the difficulties that need to be overcome for a reliable use of the TF technique with high-Z, high-velocity radioactive beams are revealed. The polarization of K-shell vacancies at high velocity, which shows more than an order of magnitude difference between Z = 20 and Z = 30 is discussed. The g-factor measurement hints at the theoretically predicted transition in the structure of the Zn isotopes near N = 40

    Large enhancement of deuteron polarization with frequency modulated microwaves

    Get PDF
    We report a large enhancement of 1.7 in deuteron polarization up to values of 0.6 due to frequency modulation of the polarizing microwaves in a two liters polarized target using the method of dynamic nuclear polarization. This target was used during a deep inelastic polarized muon-deuteron scattering experiment at CERN. Measurements of the electron paramagnetic resonance absorption spectra show that frequency modulation gives rise to additional microwave absorption in the spectral wings. Although these results are not understood theoretically, they may provide a useful testing ground for the deeper understanding of dynamic nuclear polarization.Comment: 10 pages, including the figures coming in uuencoded compressed tar files in poltar.uu, which also brings cernart.sty and crna12.sty files neede

    Neutron-proton pairing in the N=Z radioactive fp-shell nuclei 56Ni and 52Fe probed by pair transfer

    Full text link
    The isovector and isoscalar components of neutron-proton pairing are investigated in the N=Z unstable nuclei of the \textit{fp}-shell through the two-nucleon transfer reaction (p,3^3He) in inverse kinematics. The combination of particle and gamma-ray detection with radioactive beams of 56^{56}Ni and 52^{52}Fe, produced by fragmentation at the GANIL/LISE facility, made it possible to carry out this study for the first time in a closed and an open-shell nucleus in the \textit{fp}-shell. The transfer cross-sections for ground-state to ground-state (J=0+^+,T=1) and to the first (J=1+^+,T=0) state were extracted for both cases together with the transfer cross-section ratios σ\sigma(0+^+,T=1) /σ\sigma(1+^+,T=0). They are compared with second-order distorted-wave born approximation (DWBA) calculations. The enhancement of the ground-state to ground-state pair transfer cross-section close to mid-shell, in 52^{52}Fe, points towards a superfluid phase in the isovector channel. For the "deuteron-like" transfer, very low cross-sections to the first (J=1+^+,T=0) state were observed both for \Ni\phe\, and \Fe\phe\, and are related to a strong hindrance of this channel due to spin-orbit effect. No evidence for an isoscalar deuteron-like condensate is observed.Comment: 7 pages, 4 figure

    Enhancement of nuclear polarization with frequency modulated microwaves

    Get PDF

    Performance of the ATLAS electromagnetic calorimeter end-cap module 0

    Get PDF
    The construction and beam test results of the ATLAS electromagnetic end-cap calorimeter pre-production module 0 are presented. The stochastic term of the energy resolution is between 10% GeV^1/2 and 12.5% GeV^1/2 over the full pseudorapidity range. Position and angular resolutions are found to be in agreement with simulation. A global constant term of 0.6% is obtained in the pseudorapidity range 2.5 eta 3.2 (inner wheel)

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    The legacy of the experimental hadron physics programme at COSY

    Get PDF
    corecore