16 research outputs found

    The wilms tumor gene wt1a contributes to blood-cerebrospinal fluid barrier function in zebrafish

    Get PDF
    The Wilms tumor suppressor gene Wt1 encodes a zinc finger transcription factor, which is highly conserved among vertebrates. It is a key regulator of urogenital development and homeostasis but also plays a role in other organs including the spleen and the heart. More recently additional functions for Wt1 in the mammalian central nervous system have been described. In contrast to mammals, bony fish possess two paralogous Wt1 genes, namely wt1a and wt1b. By performing detailed in situ hybridization analyses during zebrafish development, we discovered new expression domains for wt1a in the dorsal hindbrain, the caudal medulla and the spinal cord. Marker analysis identified wt1a expressing cells of the dorsal hindbrain as ependymal cells of the choroid plexus in the myelencephalic ventricle. The choroid plexus acts as a blood-cerebrospinal fluid barrier and thus is crucial for brain homeostasis. By employing wt1a mutant larvae and a dye accumulation assay with fluorescent tracers we demonstrate that Wt1a is required for proper choroid plexus formation and function. Thus, Wt1a contributes to the barrier properties of the choroid plexus in zebrafish, revealing an unexpected role for Wt1 in the zebrafish brain

    Lung cancer biomarker testing : perspective from Europe

    Get PDF
    A questionnaire on biomarker testing previously used in central European countries was extended and distributed in Western and Central European countries to the pathologists participating at the Pulmonary Pathology Society meeting 26-28 June 2019 in Dubrovnik, Croatia. Each country was represented by one responder. For recent biomarkers the availability and reimbursement of diagnoses of molecular alterations in non-small cell lung carcinoma varies widely between different, also western European, countries. Reimbursement of such assessments varies widely between unavailability and payments by the health care system or even pharmaceutical companies. The support for testing from alternative sources, such as the pharmaceutical industry, is no doubt partly compensating for the lack of public health system support, but it is not a viable or long-term solution. Ideally, a structured access to testing and reimbursement should be the aim in order to provide patients with appropriate therapeutic options. As biomarker enabled therapies deliver a 50% better probability of outcome success, improved and unbiased reimbursement remains a major challenge for the future.Peer reviewe

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    Get PDF
    There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups

    Analysis of Zebrafish Kidney Development with Time-lapse Imaging Using a Dissecting Microscope Equipped for Optical Sectioning

    No full text
    In order to understand organogenesis, the spatial and temporal alterations that occur during development of tissues need to be recorded. The method described here allows time-lapse analysis of normal and impaired kidney development in zebrafish embryos by using a fluorescence dissecting microscope equipped for structured illumination and z-stack acquisition. To visualize nephrogenesis, transgenic zebrafish (Tg(wt1b:GFP)) with fluorescently labeled kidney structures were used. Renal defects were triggered by injection of an antisense morpholino oligonucleotide against the Wilms tumor gene wt1a, a factor known to be crucial for kidney development. The advantage of the experimental setup is the combination of a zoom microscope with simple strategies for re-adjusting movements in x, y or z direction without additional equipment. To circumvent focal drift that is induced by temperature variations and mechanical vibrations, an autofocus strategy was applied instead of utilizing a usually required environmental chamber. In order to re-adjust the positional changes due to a xy-drift, imaging chambers with imprinted relocation grids were employed. In comparison to more complex setups for time-lapse recording with optical sectioning such as confocal laser scanning or light sheet microscopes, a zoom microscope is easy to handle. Besides, it offers dissecting microscope-specific benefits such as high depth of field and an extended working distance. The method to study organogenesis presented here can also be used with fluorescence stereo microscopes not capable of optical sectioning. Although limited for high-throughput, this technique offers an alternative to more complex equipment that is normally used for time-lapse recording of developing tissues and organ dynamics

    Aging Activates the Immune System and Alters the Regenerative Capacity in the Zebrafish Heart

    No full text
    Age-associated organ failure and degenerative diseases have a major impact on human health. Cardiovascular dysfunction has an increasing prevalence with age and is one of the leading causes of death. In contrast to humans, zebrafish have extraordinary regeneration capacities of complex organs including the heart. In addition, zebrafish has recently become a model organism in research on aging. Here, we have compared the ventricular transcriptome as well as the regenerative capacity after cryoinjury of old and young zebrafish hearts. We identified the immune system as activated in old ventricles and found muscle organization to deteriorate upon aging. Our data show an accumulation of immune cells, mostly macrophages, in the old zebrafish ventricle. Those immune cells not only increased in numbers but also showed morphological and behavioral changes with age. Our data further suggest that the regenerative response to cardiac injury is generally impaired and much more variable in old fish. Collagen in the wound area was already significantly enriched in old fish at 7 days post injury. Taken together, these data indicate an ‘inflammaging’-like process in the zebrafish heart and suggest a change in regenerative response in the old

    Insights into the Solubility of Poly(vinylphenothiazine) in Carbonate-Based Battery Electrolytes

    No full text
    Organic materials are promising candidates for next-generation battery systems. However, many organic battery materials suffer from high solubility in common battery electrolytes. Such solubility can be overcome by introducing tailored high-molecular-weight polymer structures, for example, by cross-linking, requiring enhanced synthetic efforts. We herein propose a different strategy by optimizing the battery electrolyte to obtain insolubility of non-cross-linked poly(3-vinyl-N-methylphenothiazine) (PVMPT). Successive investigation and theoretical insights into carbonate-based electrolytes and their interplay with PVMPT led to a strong decrease in the solubility of the redox polymer in ethylene carbonate/ethyl methyl carbonate (3:7) with 1 M LiPF6. This allowed accessing its full theoretical specific capacity by changing the charge/discharge mechanism compared to previous reports. Through electrochemical, spectroscopic, and theoretical investigations, we show that changing the constituents of the electrolyte significantly influences the interactions between the electrolyte molecules and the redox polymer PVMPT. Our study demonstrates that choosing the ideal electrolyte composition without chemical modification of the active material is a successful strategy to enhance the performance of organic polymer-based batteries
    corecore