141 research outputs found

    Extensive Aerosol Optical Properties and Aerosol Mass Related Measurements During TRAMP/TexAQS 2006 – Implications for PM Compliance and Planning

    Get PDF
    Extensive aerosol optical properties, particle size distributions, and Aerodyne quadrupole aerosol mass spectrometer measurements collected during TRAMP/TexAQS 2006 were examined in light of collocated meteorological and chemical measurements. Much of the evident variability in the observed aerosol-related air quality is due to changing synoptic meteorological situations that direct emissions from various sources to the TRAMP site near the center of the Houston-Galveston-Brazoria (HGB) metropolitan area. In this study, five distinct long-term periods have been identified. During each of these periods, observed aerosol properties have implications that are of interest to environmental quality management agencies. During three of the periods, long range transport (LRT), both intra-continental and intercontinental, appears to have played an important role in producing the observed aerosol. During late August 2006, southerly winds brought super-micron Saharan dust and sea salt to the HGB area, adding mass to fine particulate matter (PM2.5) measurements, but apparently not affecting secondary particle growth or gas-phase air pollution. A second type of LRT was associated with northerly winds in early September 2006 and with increased ozone and sub-micron particulate matter in the HGB area. Later in the study, LRT of emissions from wildfires appeared to increase the abundance of absorbing aerosols (and carbon monoxide and other chemical tracers) in the HGB area. However, the greatest impacts on Houston PM2.5air quality are caused by periods with low-wind-speed sea breeze circulation or winds that directly transport pollutants from major industrial areas, i.e., the Houston Ship Channel, into the city center

    Construction and Analysis of an Ozone Profile Climatology Over Houston, Texas

    Get PDF
    Since the summer of 2004, over 200 ozonesondes have been launched from the campuses of Rice University or the University of Houston (29.7 N, 95.3 W), each about 3 miles from downtown Houston. These sounding launches have been sponsored by NASA, the Shell Center for Sustainability of Rice University, and the Texas Commissions for Environmental Quality as part of a large effort to understand Houston’s ozone problem. Data from these soundings have provided valuable insight into the seasonal and diurnal variations of the vertical ozone distribution and their relationship to changes in atmospheric conditions. In this presentation, we show annual and seasonal variability in the ozone profile, evidence for the impact of meteorological factors on the ozone profile, and comparisons of the ozonesonde data with TES and OMI retrievals

    The Coral Bleaching Automated Stress System (CBASS): A low‐cost, portable system for standardized empirical assessments of coral thermal limits

    Get PDF
    Ocean warming is increasingly affecting marine ecosystems across the globe. Reef-building corals are particularly affected by warming, with mass bleaching events increasing in frequency and leading to widespread coral mortality. Yet, some corals can resist or recover from bleaching better than others. Such variability in thermal resilience could be critical to reef persistence; however, the scientific community lacks standardized diagnostic approaches to rapidly and comparatively assess coral thermal vulnerability prior to bleaching events. We present the Coral Bleaching Automated Stress System (CBASS) as a low-cost, open-source, field-portable experimental system for rapid empirical assessment of coral thermal thresholds using standardized temperature stress profiles and diagnostics. The CBASS consists of four or eight flow-through experimental aquaria with independent water masses, lighting, and individual automated temperature controls capable of delivering custom modulating thermal profiles. The CBASS is used to conduct daily thermal stress exposures that typically include 3-h temperature ramps to multiple target temperatures, a 3-h hold period at the target temperatures, and a 1-h ramp back down to ambient temperature, followed by an overnight recovery period. This mimics shallow water temperature profiles observed in coral reefs and prompts a rapid acute heat stress response that can serve as a diagnostic tool to identify putative thermotolerant corals for in-depth assessments of adaptation mechanisms, targeted conservation, and possible use in restoration efforts. The CBASS is deployable within hours and can assay up to 40 coral fragments/aquaria/day, enabling high-throughput, rapid determination of thermal thresholds for individual genotypes, populations, species, and sites using a standardized experimental framework

    The Coral Bleaching Automated Stress System (CBASS): A Low-Cost, Portable System for Standardized Empirical Assessments of Coral Thermal Limits

    Get PDF
    Ocean warming is increasingly affecting marine ecosystems across the globe. Reef-building corals are particularly affected by warming, with mass bleaching events increasing in frequency and leading to widespread coral mortality. Yet, some corals can resist or recover from bleaching better than others. Such variability in thermal resilience could be critical to reef persistence; however, the scientific community lacks standardized diagnostic approaches to rapidly and comparatively assess coral thermal vulnerability prior to bleaching events. We present the Coral Bleaching Automated Stress System (CBASS) as a low-cost, open-source, field-portable experimental system for rapid empirical assessment of coral thermal thresholds using standardized temperature stress profiles and diagnostics. The CBASS consists of four or eight flow-through experimental aquaria with independent water masses, lighting, and individual automated temperature controls capable of delivering custom modulating thermal profiles. The CBASS is used to conduct daily thermal stress exposures that typically include 3-h temperature ramps to multiple target temperatures, a 3-h hold period at the target temperatures, and a 1-h ramp back down to ambient temperature, followed by an overnight recovery period. This mimics shallow water temperature profiles observed in coral reefs and prompts a rapid acute heat stress response that can serve as a diagnostic tool to identify putative thermotolerant corals for in-depth assessments of adaptation mechanisms, targeted conservation, and possible use in restoration efforts. The CBASS is deployable within hours and can assay up to 40 coral fragments/aquaria/day, enabling high-throughput, rapid determination of thermal thresholds for individual genotypes, populations, species, and sites using a standardized experimental framework

    Multi-Messenger Astronomy with Extremely Large Telescopes

    Get PDF
    The field of time-domain astrophysics has entered the era of Multi-messenger Astronomy (MMA). One key science goal for the next decade (and beyond) will be to characterize gravitational wave (GW) and neutrino sources using the next generation of Extremely Large Telescopes (ELTs). These studies will have a broad impact across astrophysics, informing our knowledge of the production and enrichment history of the heaviest chemical elements, constrain the dense matter equation of state, provide independent constraints on cosmology, increase our understanding of particle acceleration in shocks and jets, and study the lives of black holes in the universe. Future GW detectors will greatly improve their sensitivity during the coming decade, as will near-infrared telescopes capable of independently finding kilonovae from neutron star mergers. However, the electromagnetic counterparts to high-frequency (LIGO/Virgo band) GW sources will be distant and faint and thus demand ELT capabilities for characterization. ELTs will be important and necessary contributors to an advanced and complete multi-messenger network.Comment: White paper submitted to the Astro2020 Decadal Surve

    A recently quenched galaxy 700 million years after the Big Bang

    Get PDF
    © 2024 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Local and low-redshift (zz10^{10}~M_{\odot})andrelativelyold.Herewereporta(mini−)quenchedgalaxyatz) and relatively old. Here we report a (mini-)quenched galaxy at z=7.3,whentheUniversewasonly700 Myrold.TheJWST/NIRSpecspectrumisveryblue(7.3, when the Universe was only 700~Myr old. The JWST/NIRSpec spectrum is very blue (U−-V=0.160.16\pm0.03 mag),butexhibitsaBalmerbreakandnonebularemissionlines.Thegalaxyexperiencedashortstarburstfollowedbyrapidquenching;itsstellarmass(4−6~mag), but exhibits a Balmer break and no nebular emission lines. The galaxy experienced a short starburst followed by rapid quenching; its stellar mass (4-6\times 10^8~M_\odot$) falls in a range that is sensitive to various feedback mechanisms, which can result in perhaps only temporary quenching.Peer reviewe

    JADES: Detecting [OIII]λ4363λ4363 Emitters and Testing Strong Line Calibrations in the High-zz Universe with Ultra-deep JWST/NIRSpec Spectroscopy up to z∌9.5z \sim 9.5

    Get PDF
    © 2024 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/We present ten novel [OIII]λ4363 auroral line detections up to z ∌ 9.5 measured from ultra-deep JWST/NIRSpec MSA spectroscopy from the JWST Advanced Deep Extragalactic Survey (JADES). We leverage the deepest spectroscopic observations taken thus far with NIRSpec to determine electron temperatures and oxygen abundances using the direct Te method. We directly compare these results against a suite of locally calibrated strong-line diagnostics and recent high-z calibrations. We find the calibrations fail to simultaneously match our JADES sample, thus warranting a self-consistent revision of these calibrations for the high-z Universe. We find a weak dependence between R2 and O3O2 with metallicity, thus suggesting these line ratios are inefficient in the high-z Universe as metallicity diagnostics and degeneracy breakers. We find R3 and R23 are still correlated with metallicity, but we find a tentative flattening of these diagnostics, thus suggesting future difficulties when applying these strong line ratios as metallicity indicators in the high-z Universe. We also propose and test an alternative diagnostic based on a different combination of R3 and R2 with a higher dynamic range. We find a reasonably good agreement (median offset of 0.002 dex, median absolute offset of 0.13 dex) with the JWST sample at low metallicity, but future investigations are required on larger samples to probe past the turnover point. At a given metallicity, our sample demonstrates higher ionization and excitation ratios than local galaxies with rest-frame EWs(HÎČ) ≈200 − 300 Å. However, we find the median rest-frame EWs(HÎČ) of our sample to be ∌2× less than the galaxies used for the local calibrations. This EW discrepancy combined with the high ionization of our galaxies does not offer a clear description of [OIII]λ4363 production in the high-z Universe, thus warranting a much deeper examination into the factors influencing these processes.Peer reviewe

    Psychosocial stress and epigenetic aging

    Get PDF
    Aging is the single most important risk factor for diseases that are currently the leading causes of morbidity and mortality. However, there is considerable inter-individual variability in risk for aging-related disease, and studies suggest that biological age can be influenced by multiple factors, including exposure to psychosocial stress. Among markers of biological age that can be affected by stress, the present article focuses on the so-called measures of epigenetic aging: DNA methylation-based age predictors that are measured in a range of tissues, including the brain, and can predict lifespan and healthspan. We review evidence linking exposure to diverse types of psychosocial stress, including early-life stress, cumulative stressful experiences, and low socioeconomic status, with accelerated epigenetic aging as a putative mediator of the effects of psychosocial environment on health and disease. The chapter also discusses methodologica
    • 

    corecore