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Local and low-redshift (z < 3) galaxies are known to broadly follow a bimodal 
distribution: actively star-forming galaxies with relatively stable star-formation rates 
and passive systems. These two populations are connected by galaxies in relatively 
slow transition. By contrast, theory predicts that star formation was stochastic at 
early cosmic times and in low-mass systems1–4. These galaxies transitioned rapidly 
between starburst episodes and phases of suppressed star formation, potentially 
even causing temporary quiescence—so-called mini-quenching events5,6. However, 
the regime of star-formation burstiness is observationally highly unconstrained. 
Directly observing mini-quenched galaxies in the primordial Universe is therefore  
of utmost importance to constrain models of galaxy formation and transformation7,8. 
Early quenched galaxies have been identified out to redshift z < 5 (refs. 9–12) and  
these are all found to be massive (M⋆ > 1010 M⊙) and relatively old. Here we report a 
(mini-)quenched galaxy at z = 7.3, when the Universe was only 700 Myr old. The  
JWST/NIRSpec spectrum is very blue (U–V = 0.16 ± 0.03 mag) but exhibits a Balmer 
break and no nebular emission lines. The galaxy experienced a short starburst 
followed by rapid quenching; its stellar mass (4–6 × 108 M⊙) falls in a range that  
is sensitive to various feedback mechanisms, which can result in perhaps only 
temporary quenching.

The galaxy was first described as a Lyman-break galaxy13 and was 
recently observed as part of our JWST Advanced Deep Extragalactic 
Survey ( JADES; galaxy ID: JADES-GS+53.15508-27.80178; hereafter sim-
ply JADES-GS-z7-01-QU) through deep (28-h) NIRSpec-MSA observa-
tions with the prism. The galaxy was pre-selected with the photometric 
Lyman dropout technique and a blue rest-frame ultraviolet (UV) colour.

The spectrum of JADES-GS-z7-01-QU is shown in Fig. 1. The redshift 
z = 7.29 ± 0.01 is unambiguously determined (using the BEAGLE code; 

see Methods) from the combined observed wavelengths of the char-
acteristic Lyα drop and Balmer break.

The 3σ upper limit on the Hβ emission-line flux, F(Hβ) < 6.1 × 
10−20 erg cm−2 s−1, implies an upper limit on the star-formation rate 
(SFR) of <0.65 M⊙ yr−1 over the past 3–10 Myr (even accounting for dust 
attenuation; see Methods). Even stronger constraints come from the 
[O III]λ5008 line: we find F([O III]λ5008) < 6.5 × 10−20 erg s−1 cm−2, which—
combined with a conservative assumption on the [O III]λ5008/Hβ  
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ratios in high-z galaxies14,15—implies a 3σ limit on the SFR five times 
lower than the Hβ-derived value. The absence of emission lines is 
independently confirmed by the medium-resolution spectrum  
(see Methods).

We measure a UV slope β = −2.09 ± 0.09, typical for galaxies at 
6 < z < 10 (refs. 16,17), indicating strong star-formation activity during 
the past 100 Myr before observation. In the rest-frame visible, we detect 
a clear Balmer break and Hδ absorption with equivalent width 
EW = 4.8 ± 1.0 ÅδH A

. This value, combined with the absence of emission 
lines, means that JADES-GS-z7-01-QU meets the most common spec-
troscopic definition of a post-starburst galaxy18,19, that is, a galaxy that 
has only recently stopped forming stars.

Previous high-redshift works have identified Balmer-break galaxies in 
the epoch of reionization20–22, indicating the existence of evolved stellar 
populations and even proposing quiescent phases in these objects20,21. 
However, without spectroscopy, one cannot rule out the presence of 
emission lines with low equivalent width or that strong emission lines 
masquerade as Balmer breaks. Furthermore, because of the lack of 
atmospheric transmission at wavelengths longer than 2.5 microns, 
it is impossible to investigate Balmer breaks at z > 5 from the ground. 
Therefore, before JWST, it was impossible to confirm the absence of 
continuing star formation.

Crucially, on the basis of colours alone, this (mini-)quenched galaxy 
would have been identified as ‘star forming’ by the colour selection 
criteria23, even if including the extension to fast-quenched galaxies24. 
Indeed, its rest-frame U–V colour of 0.16 ± 0.03 mag places it outside 
the quiescent region of the UVJ diagram, regardless of V–J colour25, as 

it is the case for other quiescent galaxies at high redshift7. However, 
thanks to JWST/NIRSpec, we can place stringent upper limits on the 
nebular emission-line fluxes.

Are there potential alternatives to the quenched interpretation? A 
very high escape fraction of ionizing Lyman-continuum (LyC) photons 
with fesc > 0.9 could strongly suppress nebular emission26. However, if 
fesc is high, this would be because nearly all of the interstellar medium 
(ISM) was ejected or consumed by star formation27; yet, if the ISM 
is absent, there is no fuel for star formation and the galaxy must be 
quenched. This makes the galaxy highly interesting in the context of 
reionization, as a remnant leaker28. The question is whether the object 
is (still) a remnant leaker at the epoch of observation. In other words, 
whether there are still very young stellar populations (a few Myr old) 
that would still be producing ionizing photons associated with O-type 
stars and which would largely escape the galaxy, as fesc ≈ 1. This scenario 
is disfavoured by the normal UV slope β (ref. 29), the Balmer break and 
by the strong Hδ absorption.

Statistically, a very recently (<10 Myr) star-forming solution with high 
fesc is also disfavoured by our further analysis. Indeed, by making use 
of the flexibility of the software BEAGLE to model the observed spec-
trum, we find that a high-fesc, recently star-forming solution—although  
possible—is strongly disfavoured compared with the quenched  
(>3–10 Myr) solution (see Methods). Furthermore, as we will discuss 
below, both the pPXF and Prospector codes, which can optionally 
decouple the continuum from the nebular lines (which are degen-
erate with fesc), do not favour a solution with very recent star forma-
tion. The second alternative that we cannot completely rule out is the 
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Fig. 1 | NIRSpec R100/prism spectrum of JADES-GS-z7-01-QU. The absence  
of emission lines, together with the Balmer break, reveals that this is a—
temporarily or permanently—(mini-)quenched, post-starburst galaxy. The 
clearly detected Lyα drop and the Balmer break unambiguously give a redshift 
of z = 7.3. The vertical dashed lines indicate the rest-frame wavelengths of the 

strongest nebular emission lines. The red line indicates the pPXF spectral fit. 
The upper panel shows the signal-to-noise ratio (S/N) in the 2D prism spectrum. 
The bottom panel shows the ratio between the residuals of the fit and the noise. 
For reference, the flux in the F200W NIRCam filter is 3.33 ± 0.08 × 10−17 erg cm−2 s−1, 
fully consistent with the spectrum.
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presence of completely obscured star formation, as advocated for some 
post-starburst galaxies in the local Universe30. However, we note that 
high dust masses and high dust extinction in such low-mass systems, 
at such high redshift, have never been observed31.

To estimate the physical properties of the galaxy including stellar 
mass M⋆, SFR, star-formation history (SFH), dust attenuation and 
stellar metallicity, we apply joint spectrophotometric modelling of 
its spectral energy distribution (SED). To marginalize over model 
assumptions and implementation, we use four different SED-fitting 
codes (pPXF, BAGPIPES, Prospector and BEAGLE; see Methods).  
Figure 1 shows, as an example, the best-fit pPXF model in red, overlaid 
on the spectrum.

The methods agree on a low stellar mass of M⋆ = 4–6 × 108 M⊙ (Table 1); 
in other words, this is an object in the dwarf-galaxy regime—essentially 
the same mass as the nearby, actively star-forming Small Magellanic 
Cloud, but at z = 7.3 and quenched.

Figure 2 shows the SFH of the galaxy, as inferred by the four codes. 
All models agree that JADES-GS-z7-01-QU is quenched and give simi-
lar stellar population parameters. The oldest notable population 
of stars is 40–150 Myr old, corresponding to a formation redshift  
z = 7.6–8.8, whereas the youngest stars have ages 20–50 Myr, corre-
sponding to a quenching redshift of z = 7.4–7.7. These numbers imply 
that JADES-GS-z7-01-QU formed in a burst of star formation lasting only 
20–100 Myr, consistent with the formation timescales of star-forming 
galaxies at similar redshifts2.

The SFR at the time of observation inferred by BAGPIPES, BEAGLE and 
Prospector are extremely low, between 10−2.6 and 10−1.4 M⊙ yr−1, yielding 
specific SFRs ranging between 10−2.3 Gyr−1 and 0.1 Gyr−1. These values 
are between 2 and 3 orders of magnitude below the main sequence of 
star-forming galaxies at this redshift32–36 and below the widely used 
threshold sSFR10 < 0.2/tH = 0.29 Gyr−1, on 10-Myr timescales, hence 
confirming that the galaxy is quenched at the epoch of observation. 
Crucially, the four codes agree that the galaxy has been strongly star 
forming between 10 and 100 Myr before the epoch of observation.

Three of the four codes infer a tentative low average stellar metallic-
ity of the galaxy of log10(Z/Z⊙) ≈ −2 (in which Z⊙ is the solar metallicity), 
whereas BAGPIPES infers log10(Z/Z⊙) ≈ −0.7. pPXF indicates the presence 
of a weak enriched population representing only 5% of the total stellar 
mass of the galaxy, which formed last before quenching. However, 
we note that stellar metallicity measurements are uncertain with the 
low-resolution prism spectroscopy.

Table 1 | Key physical quantities inferred by the four full 
spectral fitting codes pPXF, BAGPIPES, BEAGLE and 
Prospector

Key inferred 
properties

pPXF BAGPIPES BEAGLE Prospector

log10(M⋆/M⊙) – 8.5 ± 0.1
−
+8.8 0.2

0.1
−
+8.7 0.1

0.1

log10[SFR (M⊙ yr−1)] – <−1.0 2.5 1.0
1.0− −

+ − −
+2.6 2.7

1.5

log10(Z/Z⊙) <−2.0 −0.7 ± 0.1 − −
+1.9 0.2

0.4 − −
+1.7 0.2

0.2

tquench (Myr) About 50
−
+18 5

5 16 4
7

−
+

−
+38 10

9

tform (Myr) About 150
−
+37 5

8 93 47
69

−
+

−
+116 45

85

AV (mag) 0.4 ± 0.1
−
+0.32 0.23

0.26 0.51 0.04
0.03

−
+

−
+0.1 0.0

0.1

M⋆, stellar mass; SFR, star-formation rate; Z, metallicity; tquench, quenching lookback time;  
tform, formation lookback time; AV, effective dust attenuation optical depth.
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Fig. 2 | The SFH of the galaxy as inferred by four different full spectral 
fitting codes, which use different (effective) priors on the SFH of the 
galaxy. All four codes confirm that the galaxy is quenched at the epoch of 
observation and reconstruct comparable SFHs. a, The stellar age–metallicity 
grid resulting from the pPXF fit. The code reconstructs dominant metal-poor 
populations forming from approximately 100 Myr to approximately 20 Myr 
before observation. The colour bar represents the fractional mass distribution 
over the SSP grid. b, The SFH inferred by BAGPIPES. The solid green line shows 

the median posterior, the shaded region shows the 1σ range, indicating a  
single star-formation burst lasting approximately 20 Myr and quenching 
approximately 20 Myr before observation. c, The SFH inferred by BEAGLE, 
which suggests that the galaxy formed approximately 100 Myr before the epoch 
of observation and quenched approximately 10–20 Myr before observation.  
d, The SFH inferred by Prospector, which suggests that the galaxy quenched 
approximately 20–30 Myr before observation after a starburst lasting 
approximately 50 Myr.
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Which physical mechanism(s) quenched the galaxy?
The inferred mass of this galaxy rules out that it has been quenched 

by the UV background37; indeed, numerical simulations predict that 
this quenching mechanism works only for very-low-mass galaxies with 
M⋆ ≈ 105–107 M⊙ (maximally < 108 M⊙)38.

In the local Universe, galaxies in the mass range of our target are 
quenched primarily by environment39,40. It has been postulated that 
some satellite galaxies may experience environment-driven quenching 
already during the epoch of reionization41. However, we do not find any 
massive galaxies nearby (see Methods), disfavouring environmental 
effects as the quenching mechanism for this target.

Given the short inferred duration of the SFH and the rapidity of the 
transition to quiescence, it seems more reasonable to speculate that 
JADES-GS-z7-01-QU may have experienced a powerful outflow, driven 
by either star-formation feedback (radiation-pressure, supernovae 
might act too slowly) or accretion on a primeval supermassive black 
hole, which rapidly ejected most of the star-forming gas42. This scenario 
is supported by the tentative low average stellar metallicity inferred by 
three of the codes. Indeed, ejective feedback mechanisms might have 
rapidly removed gas from the galaxy and quenched it, before the ISM 
could be substantially enriched with new metals. A slower quench-
ing process (such as the starvation scenarios) would have probably 
resulted in a longer transition between star forming and quenched 
and into higher-metallicity stellar populations, formed out of recycled 
gas produced by stellar evolution and returned to the ISM by means 
of supernovae43,44.

These outflow events, driven by either star formation or active 
galactic nucleus, might have mini-quenched star formation only  
temporarily45, until new or re-accreted material replenishes the sup-
ply of gas available for star formation and rejuvenates the galaxy. The 
latter picture may be qualitatively in agreement with a wide range of 
cosmological simulations predicting that a population of galaxies in 
the early Universe goes through periodic bursts of star formation, 
interspersed with periods of suppressed star formation45–47. Although 
the expected SFHs are very ‘bursty’, these recent simulations struggle 
to achieve the complete quenching observed by us for galaxies with 
mass similar to our system.

More generally, interpreting these observations with existing simu-
lations is complicated because, according to current theories47, this 
object occupies the transition region between bursty and stable SFHs. 
Moreover, it is important to note that these models do not include active 
galactic nucleus feedback, which recent observations have shown to be 
important in local galaxies of this mass range48. These difficulties mean 
that JADES-GS-z7-01-QU provides the community with the opportunity 
to shed light on this pivotal mass range.

We conclude by emphasizing that the discovery and spectroscopic 
analysis of a (mini-)quenched galaxy at redshift z = 7.3 by our JADES 
collaboration ushers the era in which we can constrain theoretical 
feedback models using direct observations of the primordial Universe. 
However, this is just the starting point for the JWST mission: upcoming 
and future observations will start the transition from the ‘discovery’ 
phase to the statistical characterization of the properties of the first 
(mini-)quenched galaxies.
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Methods

JWST/NIRSpec spectra
The NIRSpec49 prism/R100 and gratings/R1000 spectra of JADES-GS-z7-
01-QU presented in this work were obtained as part of our JADES GTO 
programme (PI: N. Lützgendorf, ID: 1210) observations in the Great 
Observatories Origins Deep Survey South (GOODS-S) field between 
21 and 25 October 2022. The R100 observations were obtained 
using the disperser/filter configuration PRISM/CLEAR, which cov-
ers the wavelength range between 0.6 μm and 5.3 μm and pro-
vides spectra with a wavelength-dependent spectral resolution of 
R ≈ 30–330. The R100 spectrum of JADES-GS-z7-01-QU is presented in  
Fig. 1.

The medium-resolution R1000 observations, with a spectral resolu-
tion of R ≈ 500–1,340, used the disperser/filter configurations G140M/
F070LP, G235M/F170LP and G395M/F290LP, which were exposed for 
14 h, 7 h and 7 h. A zoom-in on the R1000 spectrum (into the region 
with spectral lines best tracing star-formation activity) is shown in 
Extended Data Fig. 1. Finally, high-resolution R2700 observations used 
G395H/F290LP and were exposed for 7 h (like the R1000 spectrum, 
the R2700 spectrum of JADES-GS-z7-01-QU contains no detections, 
hence is not shown).

The programme observed a total of 253 galaxies over three dither 
pointings, with JADES-GS-z7-01-QU being observed in each of the three 
pointings. Each dither pointing had a different microshutter array 
(MSA) configuration to place the spectra at different positions on the 
detector to decrease the impact of detector gaps, mitigate detector 
artefacts and improve the signal-to-noise ratio for high-priority targets, 
while increasing the density of observed targets. Within each individual 
dither pointing, the telescope executed a three-nod pattern (by slightly 
reorienting the telescope by the length of one microshutter, keeping 
the same MSA configuration). In each of the three nodding pointings, 
three microshutters were opened for each target, with the targets in the 
central shutter. Each three-point nodding was executed within 8,403 s. 
The nodding pattern has been repeated four times in the PRISM/CLEAR 
configuration, two times in the G140M/F070LP combination, once 
in the G235M/F170LP combination and once in the G395M/F290LP 
combination. This resulted in a total exposure time for JADES-GS-z7-
01-QU of 28 h in R100, 14 h in G140M and 7 h in each of G235M,  
G395M and G395H.

The flux-calibrated spectra were extracted using a customized 
pipeline developed by the NIRSpec GTO team, which builds on the 
publicly available ESA NIRSpec Science Operations Team (SOT) pipe-
line50. A detailed description of the custom pipeline will be presented 
in a forthcoming technical paper (Carniani et al., in preparation) and 
more information can be found in ref. 51. We summarize here the main 
steps and the differences to the publicly available pipeline. For each 
exposure, we extract the count rate for each pixel, removing cosmic rays 
and flagging saturation. The 2D spectrum is background subtracted 
on the basis of the two other exposures in the three-nod pattern. The 
individual 2D spectra are flat-fielded and illumination-corrected, tak-
ing into account the wavelength-dependent throughput. The wave-
length and flux calibration was then applied, with each pixel of the 
2D spectrum having an associated wavelength and position along the 
shutter. We applied a wavelength-dependant path-loss correction to 
account for flux falling outside the microshutter, taking into account 
the considerable point spread function variation of NIRSpec, treating 
the target as a point source. For the prism, we used an irregular spectral 
wavelength grid, taking into account the resolution (R) as a function 
of wavelength. The 1D spectra for the three nod positions from each of 
the three pointings are combined by a weighted average into a single 
1D spectrum. Outliers are rejected with a sigma-clipping algorithm. 
The presented 1D spectra come from a combination of the 1D indi-
vidual spectra and are not an extraction from the presented combined  
2D spectra.

JWST/NIRCam image and morphology
A JWST/NIRCam F444W-F200W-F090W rgb (red-green-blue) colour 
image of JADES-GS-z7-01-QU from our JADES programme (PI: Daniel 
J. Eisenstein, ID: 1180), created from cutouts of the mosaics in each 
filter, at wavelengths λ ≈ 0.8–5 μm, is shown in Extended Data Fig. 2.

For the spectrophotometric modelling of JADES-GS-z7-01-QU, we 
used the photometry from the JADES and JEMS52 NIRCam53,54 surveys. In 
particular, the modelling included deep infrared NIRCam observations 
with the following filters: F090W, F115W, F150W, F182M, F200W, F210M, 
F277W, F335M, F356W, F410M, F430M, F444W, F460M and F480M. The 
JADES photometry reduction pipeline made use of the JWST Calibra-
tion Pipeline ( JWSTCP, v1.9.2) with the CRDS pmap context 1039. The 
raw images were transformed into count-rate images, making use of 
JWSTCP stage 1, for which detector-level corrections and ‘snowballs’ 
were accounted. The count-rate images were then flat-fielded and 
flux-calibrated with a customized methodology, using JWSTCP stage 
2. Finally, the mosaics were created using stage 3 of the pipeline. For 
further details on the JADES photometry data reduction pipeline, see 
refs. 55,56.

To obtain the morphological parameters of JADES-GS-z7-01-QU, we 
fit the NIRCam photometry with Forcepho ( Johnson et al., in prepa-
ration). Forcepho models galaxies and substructures (for example, 
clumps or blended companions) as several Sérsic profiles convolved 
with the instrument point spread functions as mixtures of Gaussians 
by forward-modelling the light distribution in all individual expo-
sures and filters and sampling the joint posterior probability dis-
tribution of all parameters through Markov chain Monte Carlo. For 
more details on the multicomponent modelling procedure, see ref. 56. 
JADES-GS-z7-01-QU appears as a compact, discy galaxy (half-light radius 
Re = 36 ± 1 mas ≙ 0.2 kpc ≙ 0.04 arcsec, Sérsic index n = 0.95 ± 0.03; 
Extended Data Fig. 2). The images also show a distinct, fainter source 
0.13 arcsec to the east. This secondary source could not be deblended 
in the spectroscopy but we obtained deblended photometry using For-
cepho. The contribution of the secondary source to the total flux ranges 
from a maximum of 27% (in the F115W band) to 17% (in the F444W band), 
therefore its SED is much bluer than that of the main source. Its photo-
metric redshift z = 7.50 ± 0.13 (1σ) is consistent with the spectroscopic 
redshift of the main source. At a redshift of z = 7.3, this secondary source 
would lie within 0.7 kpc (or 3Re) from the centre of JADES-GS-z7-01-QU; 
its interpretation as a clump or satellite is unclear. To attempt removing 
its contribution from the spectrum of the main source, we extracted a 
spectrum from the central three pixels (0.3 arcsec) from the NIRSpec 
2-d spectrum; using this spectrum does not change the interpretation 
of our results, that is, JADES-GS-z7-01-QU is still quenched.

As discussed in the main text, quenching by environment is ruled 
out for JADES-GS-z7-01-QU, as no other galaxy resides nearby. This 
can be verified with JADES NIRCam imaging on our publicly available 
website and more specifically the interactive tool FitsMap: https://
jades.idies.jhu.edu/public/?ra=53.1554497&dec=-27.8018917&zoom=9 
at the coordinates RA = 53.1551 and dec. = −27.8018.

Full spectral fitting
pPXF. The red model fit of the stellar continuum in Fig. 1 was performed 
with the χ2-minimization Penalized PiXel-Fitting code pPXF (refs. 57,58), 
using a library of single stellar population (SSP) templates spectra ob-
tained combining the synthetic C3K model atmospheres59 with MIST 
isochrones60 and solar abundances. The SSP spectra span a full 2D 
logarithmic grid of 62 ages and 10 metallicities from ageSSP = 106.0 years 
to 109.2 years (generously older than the age of the Universe at z = 7.3) 
and log10(Z/Z⊙)SSP = −2.5 to 0.5. Owing to the low resolution of the R100 
spectrum, we fix the stellar velocity dispersion to its virial estimate 
σ σ R

*
≈ ≡ GM

*
/(5 ) = 50 km svir e

−1. To account for dust reddening, the 
fitted SSP are multiplicatively coupled to the dust attenuation curve in 
ref. 61. To infer the stellar population weight-grid shown in Fig. 2a, 

https://jades.idies.jhu.edu/public/?ra=53.1554497&dec=-27.8018917&zoom=9
https://jades.idies.jhu.edu/public/?ra=53.1554497&dec=-27.8018917&zoom=9


following ref. 62, we first convolve the SSP templates to match the 
wavelength-dependant spectral resolution of the prism spectrum. Then, 
to avoid numerical problems, both the spectrum and the templates are 
renormalized by the median flux per spectral pixel. Then we run an ini-
tial fit with pPXF and we σ-clip outliers in the spectrum. Finally, we per-
form a residual-based bootstrapping of the initial pPXF best fit, without 
regularization57,58, over 1,000 iterations. The inferred bootstrapped SSP 
grids are averaged to recover the non-parametric SFH, consistent with 
the intrinsic noise of the spectrum, presented in Fig. 2a.

We infer a dust attenuation of the stars in this galaxy of AV = 0.4 ± 0.1. 
It should be noted that the presence of dust in the pPXF fit is mainly 
driven by the UV slope. The complex physics of the Lyα drop is not 
included in the SSP templates. Masking this part of the spectrum returns 
a nearly dust-free fit with older and metal-richer stellar populations, 
which would make JADES-GS-z7-01-QU even more quenched. As stated 
in the main text, we infer an extremely low average stellar metallicity 
of log10(Z/Z⊙) ≈ −2 with pPXF. It should be noted that the dominant 
reconstructed stellar populations lie at log10(Z/Z⊙) ≈ −2.5, at the bound-
ary of the available grid of synthetic spectra. This suggests that model 
SSP spectra of even lower metallicity might be needed in the future to 
accurately model the stellar populations in galaxies at high redshift. 
However, we note that the metallicity measurements are uncertain, 
owing to the low resolution of the prism. We infer that the oldest notable 
population of stars (that is, indicating the start of the star formation) in 
the galaxy is 150 Myr old, whereas the youngest is 50 Myr old, resulting 
in an extremely short duration of the star formation of just 100 Myr 
between the formation of the galaxy and its quenching.

BAGPIPES. We used the Bayesian Analysis of Galaxies for Physical 
Inference and Parameter EStimation (BAGPIPES) code63 to simultane-
ously fit the NIRSpec PRISM measurements and NIRCam photometry. 
Following ref. 64, we used the updated BC03 stellar population mod-
els65,66 combined with the stellar MILES library67 and the updated stel-
lar evolution tracks68,69. For the presented BAGPIPES fit, we assumed 
two bins of constant SFH, one fixed bin over the past 10 Myr and one 
variable bin spanning a range beyond 10 Myr (minimum age ranging 
between 10 Myr and 0.5 Gyr, maximum age between 11 Myr and the 
age of the Universe). We varied the total stellar mass formed between 
0 and 1015 M⊙ and the stellar metallicity of the variable SFH bin between 
0.01 Z⊙ and 1.5 Z⊙ (the 10-Myr bin having a metallicity of 0.2 Z⊙ to match 
the inferred metallicity of the variable-SFH bin). Nebular emission 
is modelled self-consistently with a grid of CLOUDY70 models with 
the ionization parameter (−3 < log10U < −0.5) as a free parameter. We 
included a flexible dust attenuation prescription71 with visual extinc-
tion and power-law slope freely varying (0 < AV < 7, 0.4 < n < 1.5) while 
fixing the fraction of attenuation from stellar birth clouds to 60% (the 
remaining fraction arising in the diffuse ISM; ref. 72). A first-order cor-
rection polynomial73 is fitted to the spectroscopic data to account for 
aperture and flux calibration effects. The spectrophotometric fit and 
the corresponding corner plot are shown in Extended Data Fig. 3. We 
find that nearly no wavelength-dependant correction is necessary at 
the blue end of the spectrum, whereas at the red end, a correction of 
15% is applied. Crucially, we find a very low SFR (consistent with 0) in 
the past 10 Myr for JADES-GS-z7-01-QU, noting that other tested SFH 
parametrizations, namely the double-power-law SFH described in 
ref. 74 and a single-bin constant SFH with flexible beginning and end of 
star formation, return consistent results and most crucially agree that 
the galaxy is quenched. We infer that the oldest stellar population is 
40 Myr old, which is equivalent to a formation redshift of z = 7.6. The gal-
axy has been quenched for 10 Myr, resulting in a short duration of star 
formation of 20 Myr from the formation of the galaxy to its quenching.

BEAGLE. We use the Bayesian analysis tool BEAGLE (ref. 66) to fit to 
the R100/prism spectrum of JADES-GS-z7-01-QU. The BEAGLE code 
incorporates a consistent modelling of stellar radiation and its transfer 

through the interstellar and intergalactic media. We model the SFH as an 
initial delayed exponential with maximum stellar age, tform (years), and 
location of the peak of star formation as free parameters. To disentangle 
the current SFR from the integrated property of total stellar mass, we 
allow for the most recent episode of star formation to be modelled as a 
constant with free parameters SFR (M⊙ yr−1) and duration, tquench (years) 
(which can vary between 107 and 108 years). The nebular emission is 
characterized by the interstellar metallicity, the ionization parameter, 
the mass fraction of interstellar metals locked within dust grains and, 
crucially, fesc (which can vary between 0 and 1). Dust attenuation follows 
the two-component prescription of ref. 71, in which we fit for the total 
effective V-band attenuation optical depth (fixing the ratio of V-band 
ISM attenuation to the V-band ISM + birth cloud attenuation to 0.4). We 
also fit for stellar metallicity, stellar mass formed and redshift, totalling 
12 free parameters. A list of the free parameters and the adopted priors 
is presented in Extended Data Table 1.

The corner plot in Extended Data Fig. 4 shows the BEAGLE posterior 
probability distributions of the BEAGLE fit. The 2D (off-diagonal) and 1D 
(along the main diagonal) subplots show the posterior distributions on 
stellar mass M⋆, metallicity Z, SFR, maximum age of stars tform, minimum 
age of stars tquench, redshift z, effective dust attenuation optical depth 
in the V-band AV and the escape fraction of ionizing photons fesc. The 
dark, medium and light blue contours show the extents of the 1σ, 2σ 
and 3σ credible regions.

BEAGLE gives a current SFR of less than 10−1.5 M⊙ yr−1, a formation 
time of less than 160 Myr before observation and a quenching time of 
roughly 15 Myr before observation.

We also note that BEAGLE, as for the other three codes, requires some 
degree of dust attenuation, which suggests that some cold gas is still 
present, which—in turn—is incompatible with fesc ≈ 1.

Prospector. We use the Bayesian SED fitting code Prospector75 to 
model the spectrophotometric data of JADES-GS-z7-01-QU. The pos-
terior corner plot for several key parameters from Prospector is shown 
in Extended Data Fig. 5. The code uses a flexible spectroscopic calibra-
tion model, combined with forward modelling of spectra and photom-
etry, to infer physical properties. Following the setup in ref. 76, we in-
clude a flexible SFH (ten bins with the bursty continuity prior), a flex-
ible attenuation law (diffuse dust optical depth with a power-law 
modifier to shape the attenuation curve of the diffuse dust in ref. 61) 
and fit for the stellar metallicity. Notably, Prospector infers a low-dust 
attenuation with A = 0.1V −0.0

+0.1  with a rather steep attenuation law 
A A( / = 2.6 )UV V −0.8

+1.4 . This is consistent with the idea that the galaxy has a 
low gas content and the low SFR in the past 30 Myr before observation. 
Prospector infers that the oldest stellar population (as defined by the 
lookback time when the first 10% of the stellar mass formed) has an age 
of about 100 Myr, which means a nominal formation redshift of z = 8.8. 
The SFR increases markedly approximately 80 Myr before observation. 
After this final burst, lasting around 50 Myr, the galaxy quenched on a 
short timescale.

We have also experimented with the standard continuity prior77, 
which weights against sharp transition in the SFH. The overall shape 
of the SFH is the same, indicating that the data strongly prefer a 
decreasing SFH in the past roughly 50 Myr. Quantitatively, the recent 
SFR (averaged over the past 10 Myr) increases with this prior to 

Mlog (SFR ( year )) = − 0.410
−1

−0.9
+0.4

⊙ , which is still consistent with being 
quenched and within the uncertainties of the fiducial value obtained 
with the bursty continuity prior. The quenching time is slightly more 
recent (24 Myr)−9

+6 , but consistent within the uncertainties quoted in 
Table 1.

Star-forming, high-fesc interpretation
It should be noted that the complete absence of nebular lines always 
allows, by construction, a solution with fesc ≈ 1 (regardless of whether 
the galaxy has been recently star forming or quiescent)—the question 
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is whether this solution is accompanied by the production of ionizing 
photons associated with continuing star formation.

The fiducial BEAGLE posterior distribution does not highlight a solu-
tion with high fesc and very recent star formation26,29,78. By contrast, 
although fesc is unconstrained, even a value approaching unity indicates 
a low SFR < 0.1 M⊙ yr−1 at the 3σ level (fifth subplot from the left at the 
bottom of Extended Data Fig. 4).

To assess the very recently star-forming and high-fesc scenario quan-
titatively, we use BEAGLE to compare two SED models. The model 
already described (see the ‘BEAGLE’ section) formally allows a star- 
forming solution with high fesc. The alternative model has a simplified 
SFH consisting of a constant SFR; in this way, low-SFR solutions are 
effectively removed by the constraint to form sufficient stellar mass 
of the appropriate age to reproduce the observed spectrum. This 
alternative model gives f = 0.98esc −0.04

+0.01  and MSFR = 0.63 year−0.05
+0.05 −1

⊙ , 
which is a much higher SFR than the alternative solution. To select the 
preferred model, we use the Bayes ratio, that is, the ratio between the 
evidence of the models. The log difference between the evidences, 
that is, the Bayes factor, is ln(K) = 4.1 ± 0.3; according to Jeffreys’ cri-
terion79, this is strong evidence for the quenched solution and we adopt 
it as our fiducial model.

As an extra test, we assumed a model with the same setup as the 
fiducial run, but forcing the escape fraction to fesc > 0.9. We find that 
the result is equal to the fiducial run and the galaxy remains quenched.

Empirical measurements
To estimate the flux upper limits on Hβ and [O III]λ5008, we sum the 
formal variance over three pixels. For EW δH A

 we use the bands in the 
Lick definition80 but without any further correction owing to spectral 
resolution.

We derive an upper limit on the SFR from the 3σ upper limit on the 
Hβ emission-line flux, F(Hβ) < 6.1 × 10−20 erg cm−2 s−1. To correct this flux 
for dust attenuation, we assume the Milky Way attenuation law81, which 
seems appropriate for galaxies at least up until z = 2.5 (refs. 82,83). Given 
that Hβ is not detected, we cannot measure the Balmer decrement. 
We therefore derive the nebular AV from the continuum AV = 0.51 mag 
inferred from BEAGLE (the highest value between all models) and 
upscale this value by 0.64, the median continuum-to-nebular AV 
ratio inferred from local galaxies84 (of stellar mass comparable with 
JADES-GS-z7-01-QU). The flux is converted to a luminosity assuming the 
Planck18 cosmology85. To convert the Hβ attenuation-corrected lumi-
nosity to a SFR, we use the conversion factor 2.1 × 10−42 M⊙ yr−1 erg−1 s, 
appropriate for a Chabrier initial mass function with a high-mass cutoff 
of 100 M⊙ and metallicity Z = 0.27 Z⊙ (ref. 83) (note that this value of the 
metallicity is higher than that inferred from the data; this provides a 
conservative estimate). This gives a SFR of 0.57 M⊙ yr−1. Even stronger 
constraints come from the [O III]λ5008 line: we find F([O III]λ5008) < 6.
5 × 10−20 erg s−1 cm−2, which, combined with a conservative assumption of 
[O III]λ5008/Hβ ratios in high-z galaxies14,15, implies a 3σ limit on the SFR 
roughly five times lower than the Hβ-derived value (SFR = 0.12 M⊙ yr−1).

Alternatively, assuming the median (and the extreme) observed 
Balmer decrement 3.5 (5.5) from ref. 83, we would obtain nebular 
AV values of 0.63 and 2.05 mag, respectively. These translate into 
[O III]λ5008-derived SFRs of 0.10 and 0.34 M⊙ yr−1, respectively. As a 
comparison, the SFR threshold for quiescence at z = 7.3 is 0.18 M⊙ yr−1 
(obtained from the threshold in sSFR defined by 0.2/tH(z) times the 
BEAGLE stellar mass (ref. 86)). Thus, in all but the most extreme sce-
nario, JADES-GS-z7-01-QU would meet the formal threshold for quies-
cence. The absence of emission lines is independently confirmed by 
the medium-resolution spectrum (see Extended Data Fig. 1).

Data availability
The reduced spectra that support the findings of this study are 
publicly available on GitHub: https://github.com/tobiaslooser/

JWST-reveals-a-recently-mini-quenched-galaxy-at-z-7.3. See MAST at 
Space Telescope Science Institute for the original data: https://archive.
stsci.edu/hlsp/jades.

Code availability
The pPXF, BAGPIPES and Prospector codes are publicly available.  
BEAGLE is available through a Docker image (distributed through 
Docker Hub) on request at https://www.iap.fr/beagle/.
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Extended Data Fig. 1 | NIRSpec R1000/grating spectrum of the (mini-)
quenched galaxy JADES-GS-z7-01-QU at z = 7.3. The spectrum confirms the 
absence of emission lines. The blue-shaded region shows the 1D noise level.  

The upper panel shows the signal-to-noise ratio (S/N) in the 2D grating spectrum. 
The spectrum is median-smoothed, for visualization.



Extended Data Fig. 2 | JWST/NIRCam image covering JADES-GS-z7-01-QU and 
its nearby projected environment. The NIRCam F444W-F200W-F090W rgb 
colour image is created from cutouts of the mosaics at wavelengths λ ≈ 0.8–5 μm. 
The five NIRSpec microshutter positions used for this target are overlaid in white.



Article

Extended Data Fig. 3 | Summary of key outputs by BAGPIPES. Bottom left, corner plot. Top right, spectrophotometric BAGPIPES fit of the JADES-GS-z7-01-QU 
R100/prism spectrum.



Extended Data Fig. 4 | Summary of key outputs by BEAGLE. Bottom left, corner plot with free fesc. Top right, BEAGLE maximum a posteriori model of the R100 
spectrum.



Article

Extended Data Fig. 5 | Summary of key outputs by Prospector. Bottom left, corner plot with stellar mass M⋆, SFR, tform, tquench, dust attenuation AV, AUV/AV and 
stellar metallicity Z. Top right, Prospector maximum a posteriori model of the R100 spectrum.



Extended Data Table 1 | Parameters and associated priors set in BEAGLE

a b( , )N  is the normal distribution with mean a and standard deviation b. †In practice, BEAGLE will not allow the age of the oldest 
stars to be greater than the time between z = 20 and the sampled redshift.
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