84 research outputs found

    Rethinking Due Process of Law in the Administrative Sphere

    Get PDF
    This article discusses the scope of the constitutional due process clause in Brazilian administrative law, based on an analysis of the Brazilian Constitution, the Fifth (1791) and Fourteenth (1868) Amendments to the U.S. Constitution, the International Covenant on Civil and Political Rights, and the European and Inter-American human rights systems. The author concludes that since the due process clause (Brazilian Constitution Article 5.54, namely, “no one shall be deprived of liberty or property without due process of law”) was inspired by the U.S. Constitution, Brazilian legislators should exercise their powers of discretion in policy-making to adapt the clause to the realities of the Brazilian administrative authorities and to the experience of the quasi-independent authorities that perform the adjudicative function under U.S. administrative law

    An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells.

    Get PDF
    Duchenne muscular dystrophy is a progressive and incurable neuromuscular disease caused by genetic and biochemical defects of the dystrophin-glycoprotein complex. Here we show the regenerative potential of myogenic progenitors derived from corrected dystrophic induced pluripotent stem cells generated from fibroblasts of mice lacking both dystrophin and utrophin. We correct the phenotype of dystrophic induced pluripotent stem cells using a Sleeping Beauty transposon system carrying the micro-utrophin gene, differentiate these cells into skeletal muscle progenitors and transplant them back into dystrophic mice. Engrafted muscles displayed large numbers of micro-utrophin-positive myofibers, with biochemically restored dystrophin-glycoprotein complex and improved contractile strength. The transplanted cells seed the satellite cell compartment, responded properly to injury and exhibit neuromuscular synapses. We also detect muscle engraftment after systemic delivery of these corrected progenitors. These results represent an important advance towards the future treatment of muscular dystrophies using genetically corrected autologous induced pluripotent stem cells

    Dominant lethal pathologies in male mice engineered to contain an X-linked DUX4 transgene

    Get PDF
    Facioscapulohumeral muscular dystrophy (FSHD) is an enigmatic disease associated with epigenetic alterations in the subtelomeric heterochromatin of the D4Z4 macrosatellite repeat. Each repeat unit encodes DUX4, a gene that is normally silent in most tissues. Besides muscular loss, most patients suffer retinal vascular telangiectasias. To generate an animal model, we introduced a doxycycline-inducible transgene encoding DUX4 and 3' genomic DNA into a euchromatic region of the mouse X chromosome. Without induction, DUX4 RNA was expressed at low levels in many tissues and animals displayed a variety of unexpected dominant leaky phenotypes, including male-specific lethality. Remarkably, rare live-born males expressed DUX4 RNA in the retina and presented a retinal vascular telangiectasia. By using doxycycline to induce DUX4 expression in satellite cells, we observed impaired myogenesis in vitro and in vivo. This mouse model, which shows pathologies due to FSHD-related D4Z4 sequences, is likely to be useful for testing anti-DUX4 therapies in FSHD

    Functional Myogenic Engraftment from Mouse iPS Cells

    Get PDF
    Direct reprogramming of adult fibroblasts to a pluripotent state has opened new possibilities for the generation of patient- and disease-specific stem cells. However the ability of induced pluripotent stem (iPS) cells to generate tissue that mediates functional repair has been demonstrated in very few animal models of disease to date. Here we present the proof of principle that iPS cells may be used effectively for the treatment of muscle disorders. We combine the generation of iPS cells with conditional expression of Pax7, a robust approach to derive myogenic progenitors. Transplantation of Pax7-induced iPS-derived myogenic progenitors into dystrophic mice results in extensive engraftment, which is accompanied by improved contractility of treated muscles. These findings demonstrate the myogenic regenerative potential of iPS cells and provide rationale for their future therapeutic application for muscular dystrophies

    The intracellular domain of ÎČ-dystroglycan mediates the nucleolar stress response by suppressing UBF transcriptional activity

    Get PDF
    ÎČ-dystroglycan (ÎČ-DG) is a key component of multiprotein complexes in the plasma membrane and nuclear envelope. In addition, ÎČ-DG undergoes two successive proteolytic cleavages that result in the liberation of its intracellular domain (ICD) into the cytosol and nucleus. However, stimuli-inducing ICD cleavage and the physiological relevance of this proteolytic fragment are largely unknown. In this study we show for the first time that ÎČ-DG ICD is targeted to the nucleolus where it interacts with the nuclear proteins B23 and UBF (central factor of Pol I-mediated rRNA gene transcription) and binds to rDNA promoter regions. Interestingly DG silencing results in reduced B23 and UBF levels and aberrant nucleolar morphology. Furthermore, ÎČ-DG ICD cleavage is induced by different nucleolar stressors, including oxidative stress, acidosis, and UV irradiation, which implies its participation in the response to nucleolar stress. Consistent with this idea, overexpression of ÎČ-DG elicited mislocalization and decreased levels of UBF and suppression of rRNA expression, which in turn provoked altered ribosome profiling and decreased cell growth. Collectively our data reveal that ÎČ-DG ICD acts as negative regulator of rDNA transcription by impeding the transcriptional activity of UBF, as a part of the protective mechanism activated in response to nucleolar stress

    Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle

    Get PDF
    From Frontiers via Jisc Publications RouterHistory: collection 2021, received 2021-04-29, accepted 2021-06-16, epub 2021-08-02Publication status: PublishedThis article will review myogenic cell transplantation for congenital and acquired diseases of skeletal muscle. There are already a number of excellent reviews on this topic, but they are mostly focused on a specific disease, muscular dystrophies and in particular Duchenne Muscular Dystrophy. There are also recent reviews on cell transplantation for inflammatory myopathies, volumetric muscle loss (VML) (this usually with biomaterials), sarcopenia and sphincter incontinence, mainly urinary but also fecal. We believe it would be useful at this stage, to compare the same strategy as adopted in all these different diseases, in order to outline similarities and differences in cell source, pre-clinical models, administration route, and outcome measures. This in turn may help to understand which common or disease-specific problems have so far limited clinical success of cell transplantation in this area, especially when compared to other fields, such as epithelial cell transplantation. We also hope that this may be useful to people outside the field to get a comprehensive view in a single review. As for any cell transplantation procedure, the choice between autologous and heterologous cells is dictated by a number of criteria, such as cell availability, possibility of in vitro expansion to reach the number required, need for genetic correction for many but not necessarily all muscular dystrophies, and immune reaction, mainly to a heterologous, even if HLA-matched cells and, to a minor extent, to the therapeutic gene product, a possible antigen for the patient. Finally, induced pluripotent stem cell derivatives, that have entered clinical experimentation for other diseases, may in the future offer a bank of immune-privileged cells, available for all patients and after a genetic correction for muscular dystrophies and other myopathies

    p53 Regulates Cell Cycle and MicroRNAs to Promote Differentiation of Human Embryonic Stem Cells

    Get PDF
    Multiple studies show that tumor suppressor p53 is a barrier to dedifferentiation; whether this is strictly due to repression of proliferation remains a subject of debate. Here, we show that p53 plays an active role in promoting differentiation of human embryonic stem cells (hESCs) and opposing self-renewal by regulation of specific target genes and microRNAs. In contrast to mouse embryonic stem cells, p53 in hESCs is maintained at low levels in the nucleus, albeit in a deacetylated, inactive state. In response to retinoic acid, CBP/p300 acetylates p53 at lysine 373, which leads to dissociation from E3-ubiquitin ligases HDM2 and TRIM24. Stabilized p53 binds CDKN1A to establish a G1 phase of cell cycle without activation of cell death pathways. In parallel, p53 activates expression of miR-34a and miR-145, which in turn repress stem cell factors OCT4, KLF4, LIN28A, and SOX2 and prevent backsliding to pluripotency. Induction of p53 levels is a key step: RNA-interference-mediated knockdown of p53 delays differentiation, whereas depletion of negative regulators of p53 or ectopic expression of p53 yields spontaneous differentiation of hESCs, independently of retinoic acid. Ectopic expression of p53R175H, a mutated form of p53 that does not bind DNA or regulate transcription, failed to induce differentiation. These studies underscore the importance of a p53-regulated network in determining the human stem cell state

    A Scalable Approach for Discovering Conserved Active Subnetworks across Species

    Get PDF
    Overlaying differential changes in gene expression on protein interaction networks has proven to be a useful approach to interpreting the cell's dynamic response to a changing environment. Despite successes in finding active subnetworks in the context of a single species, the idea of overlaying lists of differentially expressed genes on networks has not yet been extended to support the analysis of multiple species' interaction networks. To address this problem, we designed a scalable, cross-species network search algorithm, neXus (Network - cross(X)-species - Search), that discovers conserved, active subnetworks based on parallel differential expression studies in multiple species. Our approach leverages functional linkage networks, which provide more comprehensive coverage of functional relationships than physical interaction networks by combining heterogeneous types of genomic data. We applied our cross-species approach to identify conserved modules that are differentially active in stem cells relative to differentiated cells based on parallel gene expression studies and functional linkage networks from mouse and human. We find hundreds of conserved active subnetworks enriched for stem cell-associated functions such as cell cycle, DNA repair, and chromatin modification processes. Using a variation of this approach, we also find a number of species-specific networks, which likely reflect mechanisms of stem cell function that have diverged between mouse and human. We assess the statistical significance of the subnetworks by comparing them with subnetworks discovered on random permutations of the differential expression data. We also describe several case examples that illustrate the utility of comparative analysis of active subnetworks
    • 

    corecore