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Abstract Direct reprogramming of adult fibroblasts to a
pluripotent state has opened new possibilities for the
generation of patient- and disease-specific stem cells.
However the ability of induced pluripotent stem (iPS) cells
to generate tissue that mediates functional repair has been
demonstrated in very few animal models of disease to date.
Here we present the proof of principle that iPS cells may be
used effectively for the treatment of muscle disorders. We
combine the generation of iPS cells with conditional
expression of Pax7, a robust approach to derive myogenic
progenitors. Transplantation of Pax7-induced iPS-derived
myogenic progenitors into dystrophic mice results in
extensive engraftment, which is accompanied by improved
contractility of treated muscles. These findings demonstrate
the myogenic regenerative potential of iPS cells and
provide rationale for their future therapeutic application
for muscular dystrophies.
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Introduction

The ability to self-renew and differentiate into all somatic
cell types make pluripotent embryonic stem (ES) cells an
attractive cell source for therapeutic applications. The
recent derivation of induced pluripotent stem (iPS) cells
from skin fibroblasts through reprogramming technology
[1–3] brings this type of therapy much closer to reality
since it allows for the derivation of patient-specific iPS
cells, eliminating the ethical and immunological issues
associated with ES cells. iPS cells have been shown by
several investigators to behave very similarly to ES cells in
terms of pluripotency [1–7], best evidenced by their ability
to form teratomas. Although many issues need to be
addressed before iPS cells can safely be applied therapeu-
tically, including bypassing the use of oncogenes as
reprogramming factors, and eliminating the use of retroviral
vectors that carry the risk of mutagenesis, the rapid pace of
research advance in this field provides rationale for the
immediate assessment of the regenerative potential of these
cells. For instance, several approaches to generate iPS cells
without viral integration into the genome have been
reported within the last few years, including the use of
safer transient vectors [8–13], or alternatively the transduc-
tion of recombinant proteins [14, 15]. One caveat for these
methods has been the low efficiency of reprogramming. In
this regard, a recent study has demonstrated safe and
efficient generation of human iPS cells by the use of
synthetic modified mRNA [16], suggesting that this
approach might be valuable for future cell-based therapies.

Another fundamental requirement for therapeutic appli-
cation is the generation of abundant tissue-specific, tumor-
free, cell populations that are able to integrate and properly
function in the host following transplantation. This has
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been accomplished for iPS-derived hematopoietic, endo-
thelial, neural, pancreatic, and liver precursor cells, which
have had their therapeutic potential assessed in the
respective models of disease, sickle cell anemia [17],
hemophilia A [18], Parkinson’s disease and spinal cord
injury [19, 20], diabetes [21], and deficiency in fumaryla-
cetoacetate hydrolase [22]. However to date, there has been
no report of functional skeletal muscle engraftment follow-
ing the transplantation of iPS-derived progenitors using a
mouse model of muscular dystrophy. Although one group
has indicated the derivation of myogenic progenitors from
iPS cells [23], the nature and function of engrafted cells
have not been rigorously studied.

In reality, the derivation of therapeutic skeletal myogenic
progenitors from ES cells is challenging since this lineage
is inefficiently produced during in vitro differentiation of
ES cells into embryoid bodies (EBs). This deficit is due to
improper somatogenesis and patterning of paraxial meso-
derm within the EB system. In the embryo these processes
culminate with activation of the myogenic program,
evidenced by up-regulation of the Myogenic Regulatory
Factors (MRFs) Myf5, Mrf4, and MyoD, [24, 25], a
process led by paired-box transcription factors Pax3 and
Pax7 [26–28], key players of embryonic muscle specifica-
tion [29, 30] and postnatal muscle regeneration [31–33]
respectively. By conditional expression of Pax3 [34] or
Pax7 [35] in the appropriate developmental window in
vitro, we are able to promote efficient myogenesis in vitro
in spite of the absence of somitogenesis or paraxial
mesoderm patterning cues, eg. notochord and neural tube,
during EB differentiation. This results in highly efficient
generation of therapeutic myogenic progenitors, which
when transplanted into dystrophic mice produce large
quantities of functional skeletal muscle tissue that incorpo-
rates normally into the host muscle [34].

In the present study, we assessed the myogenic
potential of iPS cells obtained from mice bearing
inducible expression of Pax7. Our results demonstrate
that Pax7-induced iPS cells give rise to a proliferating
population of myogenic progenitors that when injected
into dystrophic mice promote not only substantial muscle
regeneration, but also contribute to improvement of the
contractile properties of engrafted muscles. These find-
ings confirm the regenerative potential of iPS cells and
give rationale for their future therapeutic application in
muscular dystrophies.

Material and Methods

Generation of Inducible Pax7 iPS Cell Lines An inducible
Pax7 ES cell line was generated by targeting Pax7 into the
inducible locus of A2Lox.cre ES cells, an improved version

of A2Lox [36], in which cre is present at the doxycycline-
inducible locus before recombination and catalyzes its
replacement by the incoming gene (inducible cassette
exchange, ICE, (Iacovino et al., submitted and [37])).
Following recombination, the locus bearing the inducible
transgene is identical regardless of which cell line (A2Lox
or ICE) was used to generate it. Mice were derived from the
iPax7 ES cells through blastocyst injection, crossed to C57/
BL6 to establish a founder bearing the iPax7 gene, and then
bred to Rosa-rtTA2SM2 mice [38] to establish an inducible
Pax7 mouse.

ICE iPS cells were derived from ICE mice (Iacovino et
al., submitted) bearing the same inducible cassette ex-
change locus, and additionally carrying a ubiquitously
expressed GFP transgene [39]. Tail tip fibroblasts (TTF)
isolated from 2 to 3 week old iPax7 or ICE mice were used
to generate iPS cells through retroviral transduction with
Oct3/4, Sox2 and Klf-4 [1]. One week after spin infection,
10% FBS IMDM medium was switched to mouse ES
medium, and 1 to 2 weeks later, iPS colonies were picked
individually and clonally expanded. ICE iPS cells were
then targeted using a p2Lox-Pax7 and selected in G418.
Tet-inducible expression of Pax7 for both cell lines was
assessed by western blot using a monoclonal anti-Pax7
antibody (R&D Systems).

In vitro Characterization of iPS Cells Following initial
expansion, several iPS clones were then characterized for
SSEA-1 expression by flow cytometry, as well as Nanog
and Alkaline Phosphatase expression by immunostaining.
Selected iPS clones were subjected to karyotype analysis by
G-banding.

Growth and Differentiation of iPS Cells iPS cells were
maintained and differentiated similarly to ES cells as
described [34]. To induce Pax7 expression during EB
differentiation, doxycycline (Sigma) was added to the
cultures at 0.75 μg/ml beginning at day 2 of EB
differentiation. At day 5 of differentiation, myogenic
precursors were purified by sorting for the PDGFαR+Flk-
1− fraction and expanded for 7–10 days before in vitro
analysis or in vivo transplantation experiments [34]. To
assess the ability of these cells to undergo final maturation,
we discontinued doxycycline and exposed cells to differ-
entiation medium, which consisted of low glucose DMEM
supplemented with 2% horse serum. After 1 week in
culture, cells were evaluated by immunofluorescence.

Antibody Staining and FACS Analysis EBs or monolayers
were collected after a short incubation with Trypsin or
PBS without calcium or magnesium supplemented with
1 mM EDTA and 0.5% BSA, washed twice with staining
buffer (PBS 2% FBS), and then suspended in the staining
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buffer containing Fc block (Pharmingen, 0.25 μg per 106

cells). Antibodies were added at 1 μg per 106 cells and
incubated at 4°C for 30 min before washing with staining
buffer. For PDGFαR and Flk-1, PE- and APC-conjugated
antibodies were used, respectively (eBioscience). We
used PE-conjugated anti-Syndecan4 (clone KY/8.2;
Pharmingen), anti-Sca-1 (clone D7, eBioscience), and
anti-CD44 (eBioscience) antibodies. PE-Cy7-conjugated
anti-CD29 (clone KMI6; Pharmingen), APC-conjugated
anti-CXCR4 (Pharmingen), and mouse anti-M-cadherin
(clone 5; Pharmingen) antibodies. For secondary staining
in the case of M-cadherin, we used APC-conjugated goat
anti-mouse Ig (Pharmingen). Stained cells were analyzed
and sorted on a FACS Aria (Becton–Dickinson) after
addition of propidium iodide (Pharmingen) to exclude
dead cells.

Real Time PCR Analysis Real time PCR for muscle specific
genes was performed using probe sets from Applied
Biosystems.

Mice All animal experiments were carried out according to
protocols approved by the University of Minnesota Institu-
tional Animal Care and Use Committee. Six- to eight-week-
old Rag2−/−/IL2Rg−/− immunodeficient and C57 BL/
10ScSN-Dmdmdx/j (X-linked muscular dystrophy) mice
(Taconic and Jackson Laboratories) were used for the
teratomas and transplantation studies, respectively.

Teratoma Assay In vivo teratoma assay was performed by
injecting one million iPS cells subcutaneously into Rag2−/−/
IL2Rg−/− immunodeficient mice. Tumor masses formed
within 4 to 6 weeks and paraffin sections were analyzed by
H&E staining.

Transplantation Studies Before intramuscular cell trans-
plantation, mice were injured with cardiotoxin, and
received immunosuppression (FK-506) daily, as previ-
ously described [34]. Briefly, 24 h after cardiotoxin
damage into both tibialis anterior muscles, myogenic
progenitors from each iPS cell line (1×106 cells/10 μl
PBS) were injected into the left TA muscle, while the right
leg received the same volume of PBS as negative control
(n=7 in each group).

Immunofluorescence Staining of Cultured Cells and Tissue
Sections Engrafted muscles were frozen in isopentane
cooled in liquid nitrogen. Serial 8 to 12 μm cryosections
were collected. For immunofluorescence staining, cells
cultured on slides and tissue cryosections were fixed
using acetone, permeabilized with 0.3% Triton X-100
(Sigma), and blocked with 3% BSA, and then incubated
with primary antibodies including GFP (Abcam), Pax7

(Hybridoma bank), Myf5, Myogenin (clone F5D),
MyoD (clone MoAb 5.8A) (all 3 from BD Biosciences),
MHC (MF-20 from Developmental Studies Hybridoma
Bank), M-cadherin (Pharmingen), and dystrophin
(Abcam). Alexa fluor 555 goat-anti-rabbit (Molecular
probes) was used for secondary staining of dystrophin
(rabbit anti-dystrophin from Abcam) and Alexa fluor
488 goat-anti-chicken (Invitrogen) was used for secondary
staining of GFP (chicken anti-GFP from Abcam). DAPI
(4,6-diamidino-2-phenylindole; Sigma) was used to
counter-stain nuclei.

Immunostaining Quantification and Calculation of Fusion
Index For immunostaining quantification, total of 4
images (200×) from 2 independent experiments were
counted and data are presented as Mean ± S.E. To
estimate the fusion index and the mean number of nuclei
per myotube, cells were allowed to differentiate in
differentiation medium, as described above, and stained
for MHC. The efficiency of the fusion was assessed by
counting the number of nuclei in differentiated myotubes
(>2 myonuclei) as a percentage of the total number of
nuclei (mononucleated and plurinucleated).This percentage
was determined by counting 4 images (200×) from 2
independent experiments and data are presented as
Mean ± S.E.

Muscle Preparation for Mechanical Studies For the mea-
surement of contractile properties, mice were anaesthetized
with avertin (250 mg/kg I.P.) and intact tibialis anterior
(TA) muscles were dissected and placed in an experi-
mental organ bath filled with mammalian Ringer
solution as previously described [34]. The muscles were
stimulated by an electric field generated between two
platinum electrodes placed longitudinally on either side of
the muscle (Square wave pulses 25 V, 0.2 ms in duration,
150 Hz). Muscles were adjusted to the optimum length
(Lo) for the development of isometric twitch force and a
5 min recovery period was allowed between stimulations.
Optimal muscle length (Lo) and stimulation voltage (25 V)
were determined from micromanipulation of muscle
length and a series of twitch contractions that produced
maximum isometric twitch force. In brief, after determi-
nation of optimal muscle length (Lo) and measurement of
maximum isometric tetanic force, total muscle cross-
sectional area (CSA) was calculated by dividing muscle
mass (mg) by the product of muscle length (mm) and
1.06 mg/mm3, the density of mammalian skeletal muscle.
Specific force (sFo) was determined by normalizing
maximum isometric tetanic force to CSA.

Statistical Analysis Differences between samples were
assessed by using the Student’s t test.
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Results

Generation of Pax7-Induced iPS Cells To derive iPS cells,
we took advantage of an inducible Pax7 mouse, which was
obtained from iPax7 ES cells (Fig. 1). After crossing these
mice with a strain bearing rtTA at the Rosa26 locus on
chromosome 6 [38], we obtained derivative mice carrying
both transgenes, in which Pax7 expression is dox-
dependent (iPax7 mice). A ubiquitously expressed GFP
transgene [39] was then crossed in to serve as a marker. Tail
tip fibroblasts (TTF) from iPax7 mice were transduced with
retroviral vectors expressing Oct4, Sox2 and Klf4 [1]
(Fig. 1). Several iPS cells clones emerged after 2–3 weeks.
From a total of 40 picked colonies, 10 were passaged,
cryopreserved, characterized for pluripotency and ability to
differentiate into embryoid bodies (EBs) (Fig. 2, Supple-
mental Table 1). Based on this screening, 2 iPS clones were
selected for further studies (Supplemental Table 1). Alter-
natively, we also used iPS cells derived from a mouse
carrying an Inducible Cassette Exchange (ICE) locus
(Iacovino et al., submitted). ICE iPS cells were then
directly targeted with p2lox-Pax7 to generate iPax7-ICE-
iPS cells (Fig. 1, annotated in red). Nine iPax7 iPS clones
were obtained following targeting, and 3 were selected for
further differentiation analyses following screening for
pluripotency and EB differentiation (Supplemental Table 1).
Selected iPS clones presented typical ES morphology
(Fig. 2a and Supplemental Fig. 1A), and expressed high
levels of SSEA-1, Nanog, and alkaline phosphatase
(Fig. 2c–e, Supplemental Fig. 1B–D, and Supplemental

Table 1). Inducible expression of Pax7 was detected in both
iPax7 and iPax7-ICE iPS cells (Fig. 2b). We confirmed the
pluripotency of these 5 iPS cells clones by injecting these
clones subcutaneously into immunodeficient mice. Like ES
cells, all iPS cell clones gave rise to teratomas (Supple-
mental Table 1), as evidenced by the presence of ectoderm,
endoderm, and mesoderm within the tumors (Fig. 2g and
Supplemental Fig. 1F). Karyotype analyses revealed that 2
of the 5 screened iPS clones were entirely without any
karyotypically abnormal cells (TTF2 and ICE7; Supple-
mental Table 1).

iPax7 and iPax7-ICE iPS cells were then differentiated
into EBs using the hanging drop method previously
described [34] (Fig. 1). The majority of these iPS clones
differentiated efficiently into EBs (Fig. 2f and Supplemen-
tal Fig. 1E), and as expected, this process was accompanied
by down-regulation of pluripotency-associated genes
(Fig. 2h and Supplemental Table 1, no dox added). When
Pax7 induction was applied from day 2 to day 5 of EB
differentiation, myogenic progenitors could be greatly
enriched by sorting for presumptive paraxial mesoderm
PDGFαR+Flk-1− cells on day 5 (Fig. 3a, C, and Supple-
mental Table 1), as observed with Pax3- and Pax7-induced
ES cells (Darabi et al., 2008 and [35]). Under proliferation
conditions, PDGFαR+Flk-1− cells sorted from both iPax7
and iPax7-ICE iPS cells gave rise to an expanding
myogenic population characterized by the expression of
Pax7 (93.7%±0.6% and 94.6%±1.1%, respectively), and
scant Myosin Heavy Chain (MHC) (9.5%±1.0% and
13.1%±2.1%, respectively), a marker of terminal muscle

monolayer D2 EBsD5 EBs
mdx mice

+ CTX

(7-10 days)

Dox No dox

iPax7 or ICE
ES cells

Blastocyst injection iPax7 or ICE mouse Tail tip fibroblasts

iPax7 or ICE iPS cells

Oct3/4
Sox2
Klf4

EB differentiation

P2lox/Pax7
Targeting

iPax7-iPS cells

PDGFαR+Flk-1- cells 

Fig. 1 Scheme of the methods utilized to generate inducible Pax7 iPS
cells. In one approach, iPS cells were derived from tail tip fibroblasts
(TTF) obtained from an iPax7 mouse, which was generated following
the blastocyst injection of iPax7 ES cells. In the second approach, iPS
cells were derived from TTFs obtained from an ICE mouse, which
resulted from the blastocyst injection of ES cells carrying the
inducible cassette exchange (ICE) system (A172lox Cre- containing
rTTA at Rosa-26 locus and Cre exchange cassette at HPRT locus).

ICE iPS clones were then targeted with Pax7 targeting construct
(P2Lox-Pax7), and clones were obtained following neo selection
(iPax7-ICE-iPS). After screening for pluripotency, selected iPax7 iPS
or iPax7 ICE iPS clones were differentiated into EBs and induced with
doxycycline to promote skeletal muscle differentiation (Pax7 expres-
sion) from day 2 to day 5, at which time point cultures were purified
for PDGFαR+Flk-1− cells, expanded, and used for in vitro and in vivo
experiments
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differentiation (Fig. 3b, d, upper panel). This profile
switched when cells were exposed to differentiation
medium (2% horse serum and dox withdrawal). Under these
conditions, Pax7 signal faded (3.0%±0.7% and 3.3%±1.2%,

respectively) and most cells expressed MHC (87.8%±2.3%
and 81.6%±5.0%, respectively). Accordingly, cells exhibited
a typical and uniform morphology of multinucleated
myotubes (Fig. 3b, d, lower panel), and presented a high
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Fig. 2 Characterization of iPS clone—TTF2. (a) Morphology of
iPax7-iPS clone. (b) Western blot analyses for Pax7 in iPax7-iPS
clones TTF2 and ICE7. (c) FACS analysis for SSEA-1 expression. (d)
Immunofluorescent staining for Nanog. (e) Staining for alkaline
phosphatase (AP). (f) Morphology of iPS-derived embryoid bodies
(EBs) (g) H&E staining of teratomas derived from Rag2−/−/IL2Rg−/−

immunodeficient mice injected with iPax7 TTF2 iPS cells. (h)
Relative levels of gene expression for Oct3/4 and Nanog in iPax7
iPS cells (TTF2 and ICE7, non-induced) and respective EBs (days 2,
4, 6, 8, 10 and 12). Transcripts are normalized to GAPDH. E14 ES
cells are used as reference
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Fig. 3 In vitro myogenic differentiation of iPax7 iPS cells. (a, c)
Representative FACS profile of day 5 EBs from TTF2 (a) and ICE7
(c) iPax7 iPS cells for PDGFαR and Flk-1 expression. Dox was added
to the EB medium beginning at day 2. Fluorescence intensity for Flk-1
(APC-conjugated) is indicated on the y axis and PDGFαR (PE-
conjugated) on the x axis. (b, d) Representative images of TTF2 (b)
and ICE7 (d) iPS cell-derived monolayers resulting from the sorting
for PDGFαR+Flk-1− (a, c) under proliferation (upper panel) and

differentiation (lower panel) conditions, and respective immunofluo-
rescent staining for Pax7 and MHC. Cells are co-stained with DAPI
(blue). Scale bar is 100 μm. (e) Real time RT-PCR expression analysis
for myogenic markers in iPax7 iPS- (TTF2 and ICE7) PDGFαR+Flk-
1−-derived cells under proliferation and differentiation conditions
indicates comparable levels of myogenesis between iPax7 ES and
iPax7 iPS cells. Transcripts are normalized to GAPDH
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fusion index (Supplemental Fig. 2A). Gene expression
analyses confirmed these results (Fig. 3e), as iPS-derived
monolayers exposed to differentiation conditions expressed
higher levels of MyoD, Myogenin, Dystrophin, and
MHC but much lower levels of Myf5 than their
proliferating Pax7-induced counterparts maintained in
the presence of dox (Fig. 3e and Supplemental Fig. 2B).
This pattern overall applied to all 5 clones, except for TTF1
(one of the abnormal clones) that in average presented
lower gene expression levels for markers of differentia-
tion (Supplemental Fig. 2B). The majority of these Pax7-
induced iPS-derived muscle progenitors expressed homo-
genously the surface markers CD44, M-cadherin, CD29,
and Sca-1 (Supplemental Fig. 3).

The regenerative potential of Pax7-induced iPS-derived
myogenic progenitors was assessed by transplanting these
cells into tibialis anterior (TA) muscles from mdx mice, a
mouse model for Duchenne muscular dystrophy character-
ized by the deficiency of dystrophin (7 mice per iPS cell
clone). Control TA muscles were injected with PBS
(contralateral leg). In these experiments, we have pre-
injured the TA muscle with cardiotoxin one day prior to
transplantation, as it has been previously observed that
pre-injury facilitates regeneration and the engraftment
of donor cells [34, 40–42] by killing recipient’s mature
myofibers while maintaining the basal lamina intact for
regeneration [43, 44]. Mice were treated with daily IP
injection of an immunosuppressive agent (tacrolimus) to
prevent the rejection of iPS-derived cells, which are non-
isogenic. Four weeks following transplantation, TAs were
harvested and analyzed for evaluation of engraftment and
contractile properties. While PBS-injected mdx mice
presented only sporadic revertant Dystrophin+ myofibers
(Fig. 4a), considerable engraftment was observed in mice
that had been transplanted with iPS-derived myogenic
progenitors (Fig. 4b–c), as evidenced by the presence of
Dystrophin+ fibers that co-expressed GFP (Fig. 4b–c,
right panel). It is important to note that although the
majority of donor-derived cells are GFP+Dystrophin+,
there are few myofibers that are single positive for one or
another. In the case of GFP+Dystrophin− fibers, this is
probably due to the differences in nuclear domains of
membrane (dystrophin) versus cytoplasmic (GFP) pro-
teins in hybrid fibers, as previously reported [45, 46]. The
detection of very few dystrophin+ fibers with weak or no
GFP signal is possibly due to: i) loss of GFP signal in
unfixed frozen sections which is necessary for dystrophin
antigen preservation and immunostaining and/or ii)
silencing of GFP virus following differentiation of
injected cells into myofibers. Importantly, quantification
of Dystrophin+ fibers in TA muscles from mdx mice that
had been transplanted with Pax7-induced iPS-derived
(TTF2 and ICE7 clones) myogenic progenitors show

similar levels of engraftment (Fig. 4d). However the other
analyzed iPS clones, TTF1, ICE3, and ICE15, showed limited
engraftment with only sporadic foci of Dystrophin+ myofibers
(Supplemental Fig. 4A–B and Supplemental Table 1).
Interestingly, the two iPS clones endowed with superior in
vivo regenerative potential (TTF2 and ICE7) were the ones
with normal karyotype (Supplemental Table 1). We also
observed the presence of donor-derived satellite cells, as
evidenced by co-expression of GFP with Pax7 or M-
cadherin (Supplemental Fig. 4D). It is critical to emphasize
that no tumors were detected in mdx mice transplanted with
ES- or iPS-derived myogenic progenitors.

Consistently with engraftment data, only muscles treated
with myogenic progenitors derived from clones TTF2 and
ICE7 showed significant superior isometric tetanic force,
both absolute and specific when compared to their
respective contralateral PBS-injected leg (Fig. 4e–f and
Supplemental Fig. 4). CSA and weight were not affected
(Fig. 4g–h), as previously observed following intramuscular
transplantation of Pax3-induced ES-derived myogenic
progenitors [34].

Discussion

Stem cell therapies have been postulated as an attractive
approach for the treatment of neurodegenerative disor-
ders, including muscular dystrophies. Several adult cell
populations with ascribed myogenic regenerative poten-
tial have been investigated over the last two decades.
Although most of these cell populations are able to
produce significant engraftment when transplanted into
dystrophic mice [41, 47–54], only mesoangioblasts and
satellite cells have been documented to produce functional
recovery of treated muscles [41, 52, 53]. Despite these
encouraging results, a number of caveats limit their
therapeutic application, in particular the difficulty in
expanding ex vivo large numbers of transplantable
myogenic progenitors, which is required since both cell
types are present at very low frequency in adult muscle.
The major hurdles associated with in vitro cell expansion
are senescence and the loss of self-renewal observed for
mesoangioblasts and satellite cells, respectively [54, 55].

Because pluripotent stem cells are unique in terms of
proliferation and differentiation potential, they represent an
advantageous option for therapeutic application. The ethical
concern associated with the use of embryonic stem cells has
been eased with the revolutionary discovery of reprogram-
ming somatic cells to a pluripotent state by Yamanaka and
colleagues [1, 2]. This method has been reproduced
successfully by many investigators [3–5], and progress
has been made in terms of improving reprogramming
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efficiency [56, 57] as well as the safety [58, 59] of this
approach. Importantly, patient-specific iPS cells have been
derived for several genetic diseases [6, 60–63], including
muscular dystrophy [6], providing an excellent tool with

which to model these genetic diseases as well as testing the
possibility of generating autologous cells that could be
corrected ex vivo and used for patient-specific treatment.
However, before one foresees the use of iPS cells for future
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Fig. 4 Engraftment ability of iPax7 iPS-derived myogenic progeni-
tors into mdx mice. Pax7-induced (dox) cell monolayers resulting
from PDGFαR+Flk-1− sorted cells from day 5 iPax7 and iPax7-ICE
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TA muscle of CTX-injured mdx mice. (a) Immunofluorescent staining
of muscle sections from PBS-injected mdx mice for dystrophin (red)
reveals only sporadic Dystrophin+ revertant myofibers. GFP signal
was not detected. (b-c) Immunofluorescent staining of muscle sections
that had been transplanted with iPax7-TTF2 (b) and iPax7-ICE (c)
iPS-derived myogenic progenitors show significant dystrophin resto-
ration that is accompanied by cytoplasmic GFP co-expression, which
indicates iPS donor origin of dystrophin+ myofibers in both cases.
Dystrophin in red (middle panel), GFP in green (left panel), and merge
(right panel). Scale bar is 100 μm. (d) Quantification of Dystrophin+

myofibers in these engrafted muscles. For each muscle, 5 represen-
tative cross-sections at 2 mm intervals were counted. For PBS control
groups, we examined 20 random sections to enumerate the sporadic
revertant Dystrophin+ myofibers. (e) Representative example of force
tracing in TA muscles from CTX-injured mdx mice. Green and red
lines show force tracing from muscles that had received cell
transplantation or PBS (control, contra-lateral leg), respectively. As
reference, force tracing of an age-matched B/6 mouse is shown (blue).
Muscles at L0 were stimulated for 2 s with a 150 Hz, 25 V, 0.2 ms
square pulse and isometric tetanic force was recorded. (f) Effect of cell
transplantation on specific force (sF0: F0 normalized to CSA). (g-h)
Average CSA and weight of analyzed muscles, respectively. Values
shown are the results of experiments on seven animals per group
±SEM. *P<0.05, **P<0.01
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therapeutic applications in muscular dystrophies, it will be
necessary to assess both their safety as well as their ability
to generate functional therapeutic myogenic progenitors in
vivo using animal models.

Using two distinct approaches to generate iPS cells with
inducible expression of Pax7 (Fig. 1), we demonstrate that
induction of Pax7 from day 2 of EB differentiation enables
the generation of proliferating early myogenic progenitors.
These are greatly enriched by sorting for paraxial mesoderm
PDGFα+Flk-1− in day 5 EBs (Fig. 3a, c), in the same
manner we have observed for ES cells [34, 35]. Pax7-
programmed cells are able to undergo terminal myogenic
differentiation in vitro upon dox and FBS withdrawal and
addition of horse serum to the culture medium (Fig. 3b, d).
Our proof of principle experiment used an integrated,
doxycycline-inducible Pax7 transgene. As this work is
translated clinically, it will be important to explore non-
genetic methods of inducing Pax7 expression, perhaps
similar to methods now in use to generate iPS cells [14–16].

Importantly, when transplanted into dystrophic mice,
proliferating skeletal myogenic progenitors are able to
promote significant regeneration as well as to improve the
contractile parameters of engrafted muscles. Through
systematic analyses and extensive screening, our results
demonstrate for the first time proof-of-principle that iPS-
derived myogenic progenitors can improve contractility in
transplanted muscle. Combined with gene correction, this
approach has great potential for the future therapeutic
application of iPS cells to muscular dystrophy.
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