165 research outputs found

    Blight Remediation and Affordable Housing Finance: A Potential Future Model for Hartford Homeownership

    Get PDF
    This report is designed to aid the Hartford Land Bank (HLB) in its efforts to remediate blight as well as lay the groundwork for a more frictionless path to homeownership for residents in the City of Hartford. Over the course of the semester, the team has conducted research and analysis on various models and state funding systems that could increase property ownership among city residents. In collaboration with the HLB and Cleveland Housing Network (CHN), the team has focused on existing rent-to-own (RTO) and lease-purchase models of homeownership with decades of high success rate

    Vaccinia virus gene F3L encodes an intracellular protein that affects the innate immune response

    Get PDF
    The Vaccinia virus BTB/kelch protein F3 has been characterized and its effects on virus replication in vitro and virus virulence in vivo have been determined. The loss of the F3L gene had no effect on virus growth, plaque phenotype or cytopathic effect in cell culture under the conditions tested. However, the virulence of a virus lacking F3L in an intradermal model was reduced compared with controls, and this was demonstrated by a significantly smaller lesion and alterations to the innate immune response to infection. The predicted molecular mass of the F3 protein is 56 kDa; however, immunoblotting of infected cell lysates using an antibody directed against recombinant F3 revealed two proteins of estimated sizes 37 and 25 kDa

    Delivery of drugs, proteins and genes into cells using transferrin as a ligand for receptor-mediated endocytosis

    Get PDF
    Transferrin, an iron-transporting serum glycoprotein, is efficiently taken up into cells by the process of receptor-mediated endocytosis. Transferrin receptors are found on the surface of most proliferating cells, in elevated numbers on erythroblasts and on many kinds of tumors. The efficient cellular mechanism for uptake of transferrin has been subverted for the delivery of low-molecular-weight drugs, protein toxins, and liposomes by linkage of these agents to transferrin or to anti-transferrin receptor antibodies. Linkage may be via chemical conjugation procedures or by the generation of chimeric fusion proteins. Transferrin conjugated to DNA-binding compounds (e.g. polycations or intercalating agents) has been successfully used for the import of DNA molecules into cells. High-level gene expression is obtained only if endosome-disruptive agents such as influenza hemagglutinin peptides or adenovirus particles are included which release the DNA complex from intracellular vesicles into the cytoplasm

    Expression and Cellular Immunogenicity of a Transgenic Antigen Driven by Endogenous Poxviral Early Promoters at Their Authentic Loci in MVA

    Get PDF
    CD8+ T cell responses to vaccinia virus are directed almost exclusively against early gene products. The attenuated strain modified vaccinia virus Ankara (MVA) is under evaluation in clinical trials of new vaccines designed to elicit cellular immune responses against pathogens including Plasmodium spp., M. tuberculosis and HIV-1. All of these recombinant MVAs (rMVA) utilize the well-established method of linking the gene of interest to a cloned poxviral promoter prior to insertion into the viral genome at a suitable locus by homologous recombination in infected cells. Using BAC recombineering, we show that potent early promoters that drive expression of non-functional or non-essential MVA open reading frames (ORFs) can be harnessed for immunogenic expression of recombinant antigen. Precise replacement of the MVA orthologs of C11R, F11L, A44L and B8R with a model antigen positioned to use the same translation initiation codon allowed early transgene expression similar to or slightly greater than that achieved by the commonly-used p7.5 or short synthetic promoters. The frequency of antigen-specific CD8+ T cells induced in mice by single shot or adenovirus-prime, rMVA-boost vaccination were similarly equal or marginally enhanced using endogenous promoters at their authentic genomic loci compared to the traditional constructs. The enhancement in immunogenicity observed using the C11R or F11L promoters compared with p7.5 was similar to that obtained with the mH5 promoter compared with p7.5. Furthermore, the growth rates of the viruses were unimpaired and the insertions were genetically stable. Insertion of a transgenic ORF in place of a viral ORF by BAC recombineering can thus provide not only a potent promoter, but also, concomitantly, a suitable insertion site, potentially facilitating development of MVA vaccines expressing multiple recombinant antigens

    Improved Innate and Adaptive Immunostimulation by Genetically Modified HIV-1 Protein Expressing NYVAC Vectors.

    Get PDF
    Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines

    Identification of two new protective pre-erythrocytic malaria vaccine antigen candidates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite years of effort, a licensed malaria vaccine is not yet available. One of the obstacles facing the development of a malaria vaccine is the extensive heterogeneity of many of the current malaria vaccine antigens. To counteract this antigenic diversity, an effective malaria vaccine may need to elicit an immune response against multiple malaria antigens, thereby limiting the negative impact of variability in any one antigen. Since most of the malaria vaccine antigens that have been evaluated in people have not elicited a protective immune response, there is a need to identify additional protective antigens. In this study, the efficacy of three pre-erythrocytic stage malaria antigens was evaluated in a <it>Plasmodium yoelii</it>/mouse protection model.</p> <p>Methods</p> <p>Mice were immunized with plasmid DNA and vaccinia virus vectors that expressed one, two or all three <it>P. yoelii </it>vaccine antigens. The immunized mice were challenged with 300 <it>P. yoelii </it>sporozoites and evaluated for subsequent infection.</p> <p>Results</p> <p>Vaccines that expressed any one of the three antigens did not protect a high percentage of mice against a <it>P. yoelii </it>challenge. However, vaccines that expressed all three antigens protected a higher percentage of mice than a vaccine that expressed PyCSP, the most efficacious malaria vaccine antigen. Dissection of the multi-antigen vaccine indicated that protection was primarily associated with two of the three <it>P. yoelii </it>antigens. The protection elicited by a vaccine expressing these two antigens exceeded the sum of the protection elicited by the single antigen vaccines, suggesting a potential synergistic interaction.</p> <p>Conclusions</p> <p>This work identifies two promising malaria vaccine antigen candidates and suggests that a multi-antigen vaccine may be more efficacious than a single antigen vaccine.</p

    Reproductive health for refugees by refugees in Guinea III: maternal health

    Get PDF
    BACKGROUND: Maternal mortality can be particularly high in conflict and chronic emergency settings, partly due to inaccessible maternal care. This paper examines associations of refugee-led health education, formal education, age, and parity on maternal knowledge, attitudes, and practices among reproductive-age women in refugee camps in Guinea. METHODS: Data comes from a 1999 cross-sectional survey of 444 female refugees in 23 camps. Associations of reported maternal health outcomes with exposure to health education (exposed versus unexposed), formal education (none versus some), age (adolescent versus adult), or parity (nulliparous, parous, grand multiparous), were analysed using logistic regression. RESULTS: No significant differences were found in maternal knowledge or attitudes. Virtually all respondents said pregnant women should attend antenatal care and knew the importance of tetanus vaccination. Most recognised abdominal pain (75%) and headaches (24%) as maternal danger signs and recommended facility attendance for danger signs. Most had last delivered at a facility (67%), mainly for safety reasons (99%). Higher odds of facility delivery were found for those exposed to RHG health education (adjusted odds ratio 2.03, 95%CI 1.23-3.01), formally educated (adjusted OR 1.93, 95%CI 1.05-3.92), or grand multipara (adjusted OR 2.13, 95%CI 1.21-3.75). Main reasons for delivering at home were distance to a facility (94%) and privacy (55%). CONCLUSIONS: Refugee-led maternal health education appeared to increase facility delivery for these refugee women. Improved knowledge of danger signs and the importance of skilled birth attendance, while vital, may be less important in chronic emergency settings than improving facility access where quality of care is acceptable

    The highly attenuated oncolytic recombinant vaccinia virus GLV-1h68: comparative genomic features and the contribution of F14.5L inactivation

    Get PDF
    As a new anticancer treatment option, vaccinia virus (VACV) has shown remarkable antitumor activities (oncolysis) in preclinical studies, but potential infection of other organs remains a safety concern. We present here genome comparisons between the de novo sequence of GLV-1h68, a recombinant VACV, and other VACVs. The identified differences in open reading frames (ORFs) include genes encoding host-range selection, virulence and immune modulation proteins, e.g., ankyrin-like proteins, serine proteinase inhibitor SPI-2/CrmA, tumor necrosis factor (TNF) receptor homolog CrmC, semaphorin-like and interleukin-1 receptor homolog proteins. Phylogenetic analyses indicate that GLV-1h68 is closest to Lister strains but has lost several ORFs present in its parental LIVP strain, including genes encoding CrmE and a viral Golgi anti-apoptotic protein, v-GAAP. The reduced pathogenicity of GLV-1h68 is confirmed in male mice bearing C6 rat glioma and in immunocompetent mice bearing B16-F10 murine melanoma. The contribution of foreign gene expression cassettes in the F14.5L, J2R and A56R loci is analyzed, in particular the contribution of F14.5L inactivation to the reduced virulence is demonstrated by comparing the virulence of GLV-1h68 with its F14.5L-null and revertant viruses. GLV-1h68 is a promising engineered VACV variant for anticancer therapy with tumor-specific replication, reduced pathogenicity and benign tissue tropism

    Insertion of Vaccinia Virus C7L Host Range Gene into NYVAC-B Genome Potentiates Immune Responses against HIV-1 Antigens

    Get PDF
    Background: The highly attenuated vaccinia virus strain NYVAC expressing HIV-1 components has been evaluated as a vaccine candidate in preclinical and clinical trials with encouraging results. We have previously described that the presence of C7L in the NYVAC genome prevents the induction of apoptosis and renders the vector capable of replication in human and murine cell lines while maintaining an attenuated phenotype in mice. Methodology/Principal Findings: In an effort to improve the immunogenicity of NYVAC, we have developed a novel poxvirus vector by inserting the VACV host-range C7L gene into the genome of NYVAC-B, a recombinant virus that expresses four HIV-1 antigens from clade B (Env, Gag, Pol and Nef) (referred as NYVAC-B-C7L). In the present study, we have compared the in vitro and in vivo behavior of NYVAC-B and NYVAC-B-C7L. In cultured cells, NYVAC-B-C7L expresses higher levels of heterologous antigen than NYVAC-B as determined by Western blot and fluorescent-activated cell sorting to score Gag expressing cells. In a DNA prime/poxvirus boost approach with BALB/c mice, both recombinants elicited robust, broad and multifunctional antigen-specific T-cell responses to the HIV-1 immunogens expressed from the vectors. However, the use of NYVAC-B-C7L as booster significantly enhanced the magnitude of the T cell responses, and induced a more balanced cellular immune response to the HIV-1 antigens in comparison to that elicited in animals boosted with NYVAC-B. Conclusions/Significance: These findings demonstrate the possibility to enhance the immunogenicity of the highl

    In vitro inhibition of monkeypox virus production and spread by Interferon-β

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Orthopoxvirus </it>genus contains numerous virus species that are capable of causing disease in humans, including variola virus (the etiological agent of smallpox), monkeypox virus, cowpox virus, and vaccinia virus (the prototypical member of the genus). Monkeypox is a zoonotic disease that is endemic in the Democratic Republic of the Congo and is characterized by systemic lesion development and prominent lymphadenopathy. Like variola virus, monkeypox virus is a high priority pathogen for therapeutic development due to its potential to cause serious disease with significant health impacts after zoonotic, accidental, or deliberate introduction into a naïve population.</p> <p>Results</p> <p>The purpose of this study was to investigate the prophylactic and therapeutic potential of interferon-β (IFN-β) for use against monkeypox virus. We found that treatment with human IFN-β results in a significant decrease in monkeypox virus production and spread <it>in vitro</it>. IFN-β substantially inhibited monkeypox virus when introduced 6-8 h post infection, revealing its potential for use as a therapeutic. IFN-β induced the expression of the antiviral protein MxA in infected cells, and constitutive expression of MxA was shown to inhibit monkeypox virus infection.</p> <p>Conclusions</p> <p>Our results demonstrate the successful inhibition of monkeypox virus using human IFN-β and suggest that IFN-β could potentially serve as a novel safe therapeutic for human monkeypox disease.</p
    corecore