
Improved Innate and Adaptive Immunostimulation by
Genetically Modified HIV-1 Protein Expressing NYVAC
Vectors
Esther D. Quakkelaar1, Anke Redeker1, Elias K. Haddad2¤, Alexandre Harari3,4, Stella Mayo McCaughey5,

Thomas Duhen6, Abdelali Filali-Mouhim2, Jean-Philippe Goulet2, Nikki M. Loof1, Ferry Ossendorp1,

Beatriz Perdiguero7, Paul Heinen7, Carmen E. Gomez7, Karen V. Kibler8, David M. Koelle5,11, Rafick P.

Sékaly2¤, Federica Sallusto6, Antonio Lanzavecchia6, Giuseppe Pantaleo3,4, Mariano Esteban7, Jim

Tartaglia9, Bertram L. Jacobs8, Cornelis J. M. Melief1,10*

1 Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands, 2 Laboratoire d’Immunologie, Centre de
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Abstract

Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination
and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that
interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to
improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene
encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated
these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8
T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and
compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-
presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-
induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation
of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag
expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-
specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced
genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined
replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines.
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Introduction

Development of an effective HIV-1 vaccine inducing both

broadly neutralizing antibodies and virus-specific T cells has the

best chance to inhibit HIV-1 replication, infection and

acquisition. However, the design of vaccines that can do both

has been extremely difficult [1–4]. The correlation between

HIV-specific CD8 T-cell responses and control of viral load as

well as the correlation between certain HLA-types and slow

disease progression [5–13] underscore that T cells could limit the

extent of subsequent viral replication. As a result, potent vaccine-

induced HIV-1-specific T-cell responses could decrease tissue

damage during the acute phase of infection and improve the

control of virus replication leading to a lower viral load set point,

thus reducing viral transmission and delaying progression to

AIDS. A vaccine that is able to induce robust long lasting T-cell

responses is, therefore, likely to have an impact on the HIV-1

epidemic.
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The highly-attenuated vaccinia virus strain NYVAC is under

intense preclinical and clinical investigation due to its efficacy and

safety as a recombinant vaccine against multiple diseases [14–21].

The NYVAC strain was derived from the Copenhagen vaccinia

strain. Deletion of 18 open reading frames (ORFs) implicated in the

pathogenicity and virulence of Orthopoxviruses, as well as in host-range

regulatory functions involving the replication competence of these

viruses, resulted in its attenuated phenotype [22]. The high level of

attenuation of this vector is illustrated by its failure to spread in

immunodeficient mice, its dramatically reduced ability to replicate in

a variety of human cells in tissue culture, and its inability to produce

infectious virus in human beings [22]. Despite its limited replication

in most mammalian cell types, it provides a high level of gene

expression and triggers strong immune responses when delivering

foreign antigens in animals and human beings [17,18,21,23–27].

These beneficial effects have stimulated the use of the NYVAC vector

for vaccination against HIV and other infectious diseases [15,28].

NYVAC expressing SIV or HIV-1 antigens (env, gag, pol or nef)

has been the subject of several preclinical and clinical studies.

Protection from disease progression and control of viral load has

been observed in macaques immunized with NYVAC expressing

env (gp120) of SHIV89.6P and gag-pol-nef of SIVmac239 or gag-pol-env

of SIVmac251, subsequently challenged with pathogenic SHIV89.6P

or SIVmac251 [25,26,29,30]. A phase I clinical study showed that

the combination of DNA/NYVAC expressing env (gp120)-gag-pol-

nef of HIV-1 from clade C triggered antigen specific immune

responses in 90% of volunteers with maintenance of these

responses for at least 72 weeks [19,20]. Despite these promising

immunogenicity data, the response was mainly directed to env and

the T cells were predominantly CD4+ [25]. Thus, improvement of

the NYVAC vector is necessary to further enhance the strength

and breadth of HIV-specific T-cell responses [31]. The recently

published results from the Thai trial, in which a moderate

protective effect of the recombinant canary poxvirus ALVAC in

combination with protein gp120 has been described [32],

underscores the need for improvement, while simultaneously

showing protective potential.

To improve immunogenicity of the NYVAC vector we followed

two strategies. First, the B19R viral gene encoding a soluble

protein preventing binding of type-I interferon (IFN) to its natural

receptor [33–37] was deleted (Kibler et al., submitted for

publication). Second, the replication capacity of NYVAC was

restored by inserting two viral host range genes, K1L and C7L

[31,38–41], resulting in a replication-competent but attenuated

NYVAC vector (Kibler et al., submitted for publication). Here, we

have performed an in-depth characterization of the biological

responses of the parental NYVAC virus and its recombinant

mutants in human cells in vitro.

Our findings reveal marked differences among the replication-

competent vectors, gene deletion vector, and unmodified NYVAC.

Deletion of the B19R IFN-binding protein resulted in enhanced

expression of IFN and IFN-induced genes, transcription factors and

target genes, both in conventional and plasmacytoid DCs. In

conventional DCs, this was associated with IFN-a production and

enhanced expression of the co-stimulatory molecule CD86.

Restoration of replication competence activated pathways involved

in processing and presentation of HIV and poxvirus antigens to T

cells. Combination of the two strategies resulted in the expression of

pathways enriched in both IFN-induced genes and antigen

processing. Indeed, replication-competent NYVAC showed sub-

stantially increased expression of Gag in the infected target cells,

permitting significant improvement in cross-presentation to HIV-

specific T cells as well as enhanced induction of HIV-specific

memory CD8 T-cell responses in vitro.

Results

Enhanced IFN-a production by cDCs after infection with
NYVAC lacking the type-I IFN-binding protein

To improve immunogenicity of the attenuated NYVAC strain,

we first generated a virus that lacks the gene coding for a soluble

protein preventing binding of type-I IFN to its natural receptor

(Table 1). This NYVAC-C-DB19R has been analyzed for its effect

on monocyte-derived and conventional DCs. NYVAC-C-DB19R

infected cDCs produced IFN-a 48 hours post-infection, whereas

NYVAC-C infected cDCs did not (figure 1). In contrast, moDCs

did not produce IFN-a after infection with either virus. pDCs

infected with both NYVAC-C or NYVAC-C-DB19R resulted in

high IFN-a production (.400 pg/ml; data not shown).

In conclusion, deletion of the type-I IFN-binding protein B19R

resulted in enhanced IFN-a production in cDCs.

Restored replication competence of NYVAC in human
cells

We also generated a virus mutant with reintroduced genes

restoring virus replication competence (Table 1). To investigate

whether reinsertion of the K1L and C7L genes, involved in virus

host range restriction [39–41], resulted in increased replication

capacity in human cells, we determined viral replication of

NYVAC-C and NYVAC-C-KC in human (HeLa) and hamster

(BHK) cells (figure 2A). Replication capacity is represented by the

increasing virus titers recovered at different time points after

infection. Both vectors were fully replication competent in BHK

cells, but replication of NYVAC-C was restricted in HeLa cells.

Reinsertion of K1L and C7L in NYVAC slightly increased

replication in BHK and fully restored replication in HeLa cells.

Table 1. Nomenclature and description of the generated NYVAC viruses.

Full name Description Ref.

NYVAC-C Attenuated Copenhagen strain of vaccinia virus containing HIV clade C gag, pol, nef and env genes [17,22]

NYVAC-C-DB19R Deletion of B19R gene that encodes for a type I IFN receptor homologue in the background of
NYVAC-C

1 [33]

NYVAC-C-K1L-C7L (NYVAC-C-KC) Host restriction genes K1L and C7L have been reinserted in NYVAC genome to restore replication
competence

1 [40]

NYVAC-C-K1L-C7L-DB19R (NYVAC-C-KC-
DB19R)

Deletion of B19R gene that encodes for a type I IFN receptor homologue in the background of the
replication-competent NYVAC

1 [33]

Simplified nomenclature of the viruses is indicated between brackets.
1Kibler et al. Submitted for publication.
doi:10.1371/journal.pone.0016819.t001
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Additional deletion of the B19R gene did not influence replication

capacity of NYVAC-C-KC in human HeLa cells (figure 2B).

These data show that the replication capacity of NYVAC in HeLa

cells was restored by the insertion of two ORFs, K1L and C7L.

NYVAC-C-KC, NYVAC-C-DB19R and NYVAC-C-KC-DB19R
induced expression of common and unique genes in
infected DCs

We next sought to determine the global transcriptional signature of

the different poxviruses in ex vivo derived cDCs and pDCs. Sorted

cDCs and pDCs were either infected with NYVAC-C-DB19R,

NYVAC-C-KC or NYVAC-C-KC-DB19R. RNA was extracted and

processed for gene array analysis. Figure 3 shows two Venn diagrams

for cDCs (left) and pDCs (right) demonstrating the number of

common and unique differentially expressed genes, induced by the

three poxviruses, in the two DC subsets. These Venn diagrams were

obtained by comparing the list of differentially expressed genes

between each poxviruses and NYVAC-C group samples. For

example, NYVAC-KC-DB19R induced 828 and 617 unique genes

in cDCs and pDCs, whereas NYVAC-C-KC induced 750 and 228

unique genes in the corresponding DC subsets. These diagrams also

show that the different poxviruses induced common genes in the DC

subsets; NYVAC-C-KC and NYVAC-C-KC-DB19R induced 1433

and 274 common genes in cDCs and pDCs, respectively. These

genes were significantly up or down regulated (p-value,0.05). The

lists of the unique genes for each mutant are presented in table S1, S2

and S3 for cDCs and S4, S5 and S6 for pDCs. A list of all common

genes between all three mutants is represented in table S7.

These results indicate that different poxviruses have the ability to

elicit distinct and common genes in DCs and that poxvirus with

multiple mutations induced distinct transcriptional profiles in cDCs

and pDCs that were different from those induced by single mutants.

Combination of the B19R deletion and replication
competence resulted in expression of pathways targeted
by both single mutants

We performed gene set enrichment analysis (GSEA) [42] to

identify the pathways that are differentially expressed in cDCs and

pDCs infected with different NYVAC mutants. GSEA was

performed by interrogating three GSEA molecular signatures

databases, namely the C2, C3 and C5 and a collection of 28

immune related gene sets described by Chaussabel et al. [43]. As

expected, NYVAC-C-DB19R induced the enhanced expression of

genes in the type-I IFN-induced gene pathways and IL-1R

(inflammasome) in pDCs (figure S1A). These pathways include

genes like NFkB1, IFN-a, TRAFD and many others (figure S1A).

A representative list with genes of each of the pathways is depicted

in the right vertical line. We also observed increased expression of

genes encoding target molecules for the transcription factors IRF1,

IRF2, IRF7 and other IFN-inducible transcription factors (figure

S1B). Similar pathways were induced in NYVAC-C-DB19R

Figure 1. IFN-a production after infection of DCs with
recombinant NYVAC. cDCs (white bars), and moDCs (black bars)
were infected for one hour with the two different recombinant viruses
NYVAC-C and NYVAC-C-DB19R (MOI 1). Forty-eight hours post infection,
IFN-a production was analyzed by ELISA. Mean values of two
independent experiments are shown. Deletion of type-I IFN binding
protein resulted in enhanced IFN-a production after infection of cDCs.
doi:10.1371/journal.pone.0016819.g001

Figure 2. Replication of NYVAC-C and NYVAC-C-KC in human
HeLa cells. A) Human HeLa cells (solid line, closed symbols) or BHK
cells (dashed line, open symbols) were infected with NYVAC-C
(triangles) or NYVAC-C-KC (squares). B) HeLa cells were infected with
NYVAC-C (black squares) or the replication-competent NYVAC-C-KC
(open diamond) and NYVAC-C-KC-DB19R (open triangle). A MOI of 5
was used for all infections. Cultures were harvested immediately after
infection, or at the indicated time points post infection. Virus was
released from cells by multiple rounds of freezing and thawing, and
released virus was titrated on permissive BHK cells. Introduction of K1L
and C7L into NYVAC-C fully restored replication competence in human
HeLa cells, comparable to replication in BHK cells. Additional deletion of
the B19R gene did not alter replication capacity. Data representative of
at least 3 independent experiments are shown.
doi:10.1371/journal.pone.0016819.g002
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infected cDCs (figure S1D-E). These results indicate that NYVAC-

C-DB19R induced the expression of IFN-induced pathways and

IFN-regulated transcription factors as well as multiple inflamma-

tory cytokines.

NYVAC-C-KC elicited the induction of pathways associated

with antigen processing and presentation as well as of genes

involved in B-cell help in cDCs (figure S2A). No expression of

IFN-induced genes and inflammatory pathways was observed. A

representative list with genes of each of the pathways is depicted in

the right vertical line. For example, the antigen processing and

presentation pathway includes genes of HLA, TAPBP, CIITA,

TAP1, and TAP2, CD40, ICAM1, and ICOSL are genes included

in the B-cell function pathway (see table S8 for a complete list of

genes of the corresponding pathways). NYVAC-C-KC induces

distinct gene set enrichment pathways in pDCs (figure S2C–D)

compared to cDCs (figure S2A–B). Differences in gene expression

are less clear between NYVAC-C and NYVAC-C-KC in infected

pDCs.

Introduction of both the B19R mutation and replication

competence into NYVAC-C enriched pathways specific for both

mutants. The NYVAC-C-KC-DB19R mutant induced the

expression of IFN genes, as well as genes involved with antigen

processing and presentation genes including the proteasome

pathway (figure 4).

Overall, NYVAC-C-DB19R induced the expression of IFN

and IFN-induced genes, transcription factors and target genes,

both in cDCs and pDCs. A summary of the genes that contribute

to the enrichment of the IFN signaling and germinal center

pathways is provided in table 2. Restoration of replication

competence in NYVAC-C-KC induced distinct signaling path-

ways in cDCs and pDCs. NYVAC-C-KC activated pathways

that enhance processing and presentation of antigens to T cells in

cDCs. Combination of these two strategies represented by the

NYVAC-C-KC-DB19R mutant resulted in the expression of

pathways enriched in IFN-induced genes and antigen processing

and presentation (table 2). These genes are important in innate

and adaptive immunity and have the potential to improve cell-

mediated immune responses.

Gene set enrichment analysis revealed the induction of
distinct signaling pathways in response to recombinant
NYVAC

The above-described results focused on pathways expected to

be targeted by the B19R deletion and restoration of replication

competence. However, gene expression arrays allowed for an

exploration of all genes up- or down-regulated in infected DCs.

In addition to IFN-induced genes, NYVAC-C-DB19R induced

the enhanced expression of genes involved in TOLL like receptor

signaling and JAK/STAT pathways (figure S1A). We also

observed the induction of genes associated with cytokine activity,

immune effector functions, and IKB kinase activity (figure S1C).

NYVAC-C-KC induced pathways with genes involved in cellular

activation, cell adhesion and germinal center activation (figure

S2A). Representative genes of each of these pathways are

depicted in the right vertical line. Furthermore, NYVAC-C-

KC also induced increased expression in target genes down-

stream of the transcription factors Sp3, POU3F2, CREL, TEF1

and E2F. For example, FOXP1 and GADD45G are genes

downstream of the transcription factor Sp3; SOX4 and

HOXA11 are target genes for POU3F2; MSC and EHD1 target

genes for CREL; ATP1B1 and CYP26A1 target genes for TEF1;

and RAD51 and YWHAQ target genes for E2F. A comprehen-

sive list of genes downstream of these transcription factors is

present in figure S2B. NYVAC-C-KC induced distinct pathways

in cDCs as compared to pDCs, shown in figure S2B. pDCs

infected with NYVAC-C-KC expressed genes associated with

inflammation, IL-6 induction, and Wnt pathways (figure S2C).

We also observed increased expression in target genes of the

transcription factors NFAT, CEBP and STAT5A (figure S2D).

Gene set enrichment analysis of NYVAC-C-KC-DB19R infected

cDCs also showed expression of genes involved in B-cell help,

TNF-a and proteasome pathways (figure 4A). Together, these

Figure 3. Venn diagram of the number of common and unique genes in cDCs and pDCs after infection with NYVAC-C and its
mutants. Venn-diagrams showing the numbers of genes that are up- and down-regulated in cDCs (left panel) and pDCs (right panel) after infection
with NYVAC-C-DB19R, NYVAC-C-KC or NYVAC-C-KC-DB19R. In cDCs 157, 750 and 828 genes are uniquely differentially expressed (p,0.05) in NYVAC-
C-DB19R, NYVAC-C-KC and NYVAC-C-KC-DB19R, respectively. In pDCs 1742, 228 and 617 genes are uniquely differentially expressed (p,0.05) in
NYVAC-C-DB19R, NYVAC-C-KC and NYVAC-C-KC-DB19R, respectively. For each gene, the expression induced by NYVAC-C-DB19R, NYVAC-C-KC or
NYVAC-C-KC-DB19R was tested for differential expression by comparison to the expression induced by NYVAC-C (n ranges between 2 and 18).
doi:10.1371/journal.pone.0016819.g003
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induced pathways have the potential to improve immunogenicity

of NYVAC as HIV vaccine.

Increased CD86 expression in DCs infected with NYVAC-
C-DB19R

In addition to the gene expression arrays, we also studied the

impact of infection with recombinant NYVAC mutants on the

maturation of DCs. Both cDCs and moDCs infected with NYVAC-

C-DB19R showed increased CD86 expression 48 hours after

infection (figure 5). In contrast, NYVAC-C-KC did not mature

cDCs or moDCs at all. Expression levels of CD86 were even lower

compared to NYVAC-C infected DCs. Of note, combination of

replication competence with the B19R gene deletion did not permit

enhanced maturation of the infected DCs. In contrast to cDCs and

moDCs, pDCs did not mature after infection (data not shown).

In conclusion, the enhanced maturation of the infected cells

following infection of cDCs with the NYVAC vector lacking the

type-I IFN decoy receptor, B19R, was only observed in the

background of the non-replicating vector, but not in combination

with replication-competent NYVAC-C-KC. Although several

pathways important for induction of immune responses showed

enhanced activity at RNA level after NYVAC-C-KC-DB19R

infection, the level of activity was lower than in the NYVAC-C-

DB19R infected DCs (figure 4 versus S2).

Enhanced HIV-1 Gag expression by replication-
competent NYVAC in human cells

The restored replication competence of NYVAC-C-KC is

expected to increase transgene expression in infected cells. To study

the HIV-antigen expression, HeLa cells and human moDCs were

infected and Gag expression was determined by flow cytometry at 6

and 24 hours post infection (figure 6). Cells infected with NYVAC-C-

KC showed substantially higher percentages of infected cells, as well as

higher median fluorescence intensity of the Gag expressing cells

compared to cells infected with NYVAC-C. Both HeLa and moDCs

infected with NYVAC-C showed a reduction in the percentage of

Gag expressing cells at 24 hours post infection. The FSC/SSC plots

and propidium iodide staining (not shown) suggest the presence of

apoptotic or necrotic cells at 24 hours post infection. Although we

cannot discriminate between apoptosis and necrosis in our assays,

induction of apoptosis in HeLa cells after infection with NYVAC has

been described before [44]. The percentage of NYVAC-C-KC

infected cells expressing Gag was also decreased at 24 hours post

infection, though there was considerably more Gag expression

compared to that in cells infected with NYVAC-C. Deletion of the

B19R gene did not influence Gag expression by either virus vector

(data not shown). Of note, we observed that Gag expression in

moDCs and the percentage of gag expressing cells were lower when

compared to HeLa cells. In both moDCs and HeLa cells, clear

differences were observed in Gag expression between the host-range

restricted NYVAC-C and the replication-competent NYVAC-C-KC.

The increased median fluorescence intensity of NYVAC-C-KC

compared to NYVAC-C (225 vs. 37.3 and 169 vs. 40.4 at 6 and

24 hours post infection, respectively; figure 6) reflects increased Gag

expression in HeLa cells. This fully correlates with the viral gene

expression patterns of the two viruses; NYVAC gene expression in

HeLa cells is restricted at later times [38], whereas in HeLa cells

infected with the replication-competent vector late products are made

Figure 4. Gene set enrichment analysis of NYVAC-C and NYVAC-C-KC-DB19R infected cDCs and pDCs. GSEA of the list of genes ranked
according to the expression difference between NYVAC-C and NYVAC-C-KC-DB19R in cDCs (A-B) and pDCs (C). GSEA using C2 database (A, C) and C5
database (B) is shown. Figure shows the pattern of enrichment using selected significant pathways and their top 5 genes members selected from the
leading edge subset (genes that contribute most to the enrichment score). The left gray and blue section of the figure shows the pathway
membership for each gene (blue, present in the pathway; grey, absent). The heatmap shows the expression level of each gene scaled to have mean
zero and standard deviation one (red, up-regulated; green, down-regulated). Each column in the heatmap represents a replicate (n ranges between 6
and 15). The color key is depicted on the right side of the figure. The NYVAC-C-KC-DB19R mutant induced the expression of IFN genes in cDCs and
pDCs, as well as genes involved with antigen processing and presentation genes.
doi:10.1371/journal.pone.0016819.g004
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and viral progeny is produced. This virus replication cycle is reflected in

the far right peak observed in HeLa cells (figure 6, right panels).

Improved cross-presentation of replication-competent
NYVAC

In addition to the effects of these virus mutants on DC

maturation, we studied the functional differences between the

different recombinant virus vectors in vitro. Towards that end, a

cross-presentation assay was developed to determine the ability of

moDCs to cross-present antigens from apoptotic infected HeLa

cells. The gating strategy is shown in figure 7A; the total

percentage of cytokine producing HIV- and vaccinia-specific

CD8 T cells is indicated in figure 7B and C, respectively. MoDCs

cross presenting NYVAC-C-KC induced enhanced cytokine

production by HIV- and vaccinia-specific CD8 T cells compared

to NYVAC-C (p,0.009 and p = 0.029, respectively). This was

observed at all virus doses tested. In contrast, NYVAC-C elicited

only very low numbers of cytokine-producing HIV- or vaccinia-

specific CD8 T cells, which was only detected with the higher virus

inoculum (MOI 1, 5). Deletion of B19R from the parental

NYVAC virus strain did not improve cytokine production by the

CD8 T cell clones that were assayed. As expected, deletion of the

B19R gene in the NYVAC-C-KC background did not further

increase cytokine production by HIV-specific CD8 T cells.

In these studies, direct presentation could be ruled out since

infected HeLa cells were irradiated to induce apoptosis and kill

residual virus. Furthermore, no cytokine production was observed

by HIV-specific T cells after incubation with infected HeLa only

(data not shown). As expected, since none of the T-cell clones used

were restricted by the HLA alleles expressed by HeLa cells [45].

These data illustrate that the restoration of replication

competence, reflected by Gag expression in HeLa cells (figure 6),

correlates with the ability of moDCs to cross-present antigens to

HIV-specific T cells in vitro (figure 7). In agreement, improved

cross-presentation to vaccinia-specific CD8 T cells is also observed

when replication competency in human cells is restored in the

NYVAC vector background.

Increased HIV memory T-cell proliferation after infection
with replication-competent NYVAC

In addition to cytokine production by HIV-specific T-cell

clones, the HIV-specific proliferative capacity of CFSE-labelled

PBMCs from an HIV-infected long-term non-progressor was

determined upon infection with the different viral vectors. Figure 8

represents CD8 T-cell proliferation as determined by CFSE

dilution measured at day 6 after stimulation with the vectors in a

dose-dependent manner. NYVAC-C-KC induced up to 15%

CFSElow CD8 T cells, indicating increased proliferation after

Table 2. Summary of genes that contribute to the enrichment of the interferon signaling or germinal center pathway after
infection with the indicated recombinant NYVAC compared to NYVAC-C.

Gene NYVAC-C-dB19R NYVAC-C-KC NYVAC-C-KC-dB19R

Interferon
Signaling

Germinal
Center
(CD40) 1

Interferon
Signaling

Germinal
Center
(CD40)1

Interferon
Signaling 2

Germinal
Center
(CD40)

Interferon
Signaling 2

Germinal
Center
(CD40)

Interferon
Signaling

Germinal
Center
(CD40)3

Interferon
Signaling

Germinal
Center
(CD40)3

pDC cDC pDC cDC pDC cDC

SERPING1

TRAFD1

EIF2AK2

OASL

STAT1

ADAR

IFITM2

IRF7

MX1

IRF1

CXCL10

BCL2

MYB

ICOSLG

STAT5A

CD40

TNF

CCR7

LYN

Marked are the genes that contribute to the enrichment of a given pathway, for a given subset.
1Germinal Center pathways are not significantly regulated with NYVAC-C-dB19R.
2Interferon is not significant in both pDCs and cDCs for NYVAC-C-KC vs NYVAC-C.
3Germinal Center pathways are significantly regulated within cDC NYVAC-C-KC-dB19R and not in pDCs.
doi:10.1371/journal.pone.0016819.t002
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Figure 5. Maturation of cDCs after infection with recombinant NYVAC. Expression of CD86 on infected cDCs and moDCs is shown. DCs were
infected for one hour with the different recombinant vectors and their phenotype was analyzed by flow cytometry after 48 hours of culture. The
shaded graphs represent NYVAC-wt infected DCs; solid lines represent the indicated recombinant NYVAC. Mean fluorescence intensity (MFI) is
indicated in the plots. MoDC and cDC infected with NYVAC-C-DB19R showed enhanced CD86 expression in contrast to DCs infected with the parental
NYVAC-C or NYVAC-C-KC. Infection with NYVAC-C-KC-DB19R did not induce increased CD86 expression. Data are representative of at least two
independent experiments.
doi:10.1371/journal.pone.0016819.g005

Figure 6. Gag expression in human moDCs and HeLa cells. Histograms show a-Gag KC57 staining in infected moDCs and HeLa cells. Cells
were infected at MOI 5 for one hour. After six and 24 hours incubation, cells were harvested and stained for Gag expression by ICS as described in the
Materials and Methods. Percentage of Gag-expressing cells and median fluorescence intensity were determined and indicated in the graphs. Shaded
graphs represent staining of NYVAC-wt infected cells. Solid line represents cells infected with the different variants. Gag expression after infection
with NYVAC-C-KC is higher compared to NYVAC-C, both in moDC and HeLa cells, at multiple time points after infection, correlating with the increased
replication capacity of NYVAC-C-KC. Data are representative of at least three similar independent experiments.
doi:10.1371/journal.pone.0016819.g006
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infection. Increased proliferation was observed at multiple MOIs

(p,0.032). Additional deletion of the B19R gene in the

replication-competent vector did not significantly increase the

proliferation of HIV-specific CD8 T cells. Surprisingly, NYVAC-

C and the B19R deletion mutant were unable to induce any

proliferation of CD8 T cells after infection (,5% CFSElow CD8 T

cells). NYVAC-wt and NYVAC-KC, both lacking the HIV-1

clade C transgenes, were unable to induce proliferation of the

CD8 T cells (data not shown).

No effect of the gene deletion approach was observed in the

NYVAC-C or NYVAC-C-KC background, indicating that only

replication competence of NYVAC-C-KC resulted in enhanced

proliferation of HIV-specific memory CD8 T cells. This is in

agreement with the increased Gag expression in HeLa cells and

moDCs as well as increased cytokine production by HIV-specific

CD8 T-cells (figure 7).

Discussion

To explore potential improvements of the immunogenicity of

the NYVAC vector, we have used two strategies: deletion of a

poxvirus gene known to encode a protein that may affect the

immune response and development of attenuated replication-

competent (in human cells) NYVAC. Of note, the replication-

competent NYVAC vectors still maintain a highly attenuated

phenotype, as assessed by mouse pathogenicity studies (Kibler

et al., submitted for publication). To induce a broad T-cell

response against HIV-1, the env, gag, pol and nef genes from a HIV-

1 clade C isolate have been included in the viral vector [17]. The

newly generated gene deletion and replication-competent NY-

VAC mutants have been extensively evaluated for their effect on

gene expression and phenotype of DCs and their ability to

stimulate CD8 T-cell responses in vitro.

In this manuscript, we show that deletion of the type I interferon

binding protein B19R resulted in a NYVAC virus with enhanced

IFN-a production, enhanced CD86 expression on cDCs and type-

I IFN RNA expression. Most recently in the mouse, it has been

shown that type-I IFN is the primary factor capable of eliciting DC

maturation and consequently T-cell functions [46]. We also

showed that restoration of replication competence of NYVAC, as

in the NYVAC-C-KC variant, resulted in activation of pathways

that enhance antigen processing and presentation and pathways

associated with B-cell help (table 2). However, the replication-

competent mutant did not elicit the induction of IFN genes and

IFN-induced transcription factors. This is not surprising as the

replication-competent mutant still expressed parental genes which

inhibit IFN. Thus, we have generated a double mutant in which

the B19R gene was deleted from the replication-competent virus

Figure 7. Antigen cross-presentation to HIV- and vaccinia-specific CD8 T-cell clones. MoDCs were incubated with infected apoptotic HeLa
cells before CD8 T-cell clones were added. After overnight incubation, cells were harvested and analyzed. A) Cytokine production by HIV-specific CD8
T cells on a representative sample. Among the lymphocyte population, CD8 T cells were gated and analyzed for IFN-c, TNF-a, IL-2 and MIP-1b
production. Cytokine production by HIV-specific CD8 T cells (B) or vaccinia-specific CD8 T cells (C) was determined. Virus variants are indicated on the
x-axis; percentages CD8 T cells producing any cytokine are indicated on the y-axis. P-values between NYVAC-C and the mutants are indicated. Mean
and standard deviation of four to six repetitions are shown. NYVAC-C elicited only very low numbers of cytokine-producing HIV- or vaccinia-specific
CD8 T cells, only detected with the higher virus inoculum. Deletion of B19R from the parental NYVAC virus strain did not improve cytokine
production. In contrast, moDCs cross presenting NYVAC-C-KC induced enhanced cytokine production by HIV- and vaccinia-specific CD8 T cells
compared to NYVAC-C; additional deletion of the B19R gene in the NYVAC-C-KC background did not further increase cytokine production.
doi:10.1371/journal.pone.0016819.g007
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to blunt the inhibitory effect of NYVAC-C-KC on IFN. Having

both modifications thus resulted in IFN gene expression, activation

of IFN-induced transcription factors, enhanced antigen processing

and presentation, and induction of B-cell help, as observed in the

gene expression profiles (summarized in table 2).

We have analyzed IFN-a production by the infected cDCs.

cDCs produced IFN-a upon infection with NYVAC-C-DB19R,

whereas no IFN-a production was detected upon infection of

cDCs with NYVAC-C (figure 1). Accordingly, deletion of the

B19R gene resulted in increased expression of IFN and IFN-

induced genes and IFN-induced transcription factors in pDCs as

well as cDCs (figure S1). This could be directly due to the absence

of the soluble type-I IFN-binding protein. Type-I IFN, produced

by the infected DCs, may subsequently lead to DC maturation.

Indeed we observed a more mature phenotype of NYVAC-C-

DB19R infected cDCs, reflected by the increased expression of

CD86 compared to the parental NYVAC-C infected cDCs.

Interestingly, the deletion of B19R in the replication-competent

virus induced IFN gene expression and the activation of IFN-

induced transcription factors. However, these were at levels that

were lower than the B19R mutant alone (figure 4 versus S2).

Indeed, we were not able to detect IFN-a production by ELISA,

which correlates with the absence of CD86 expression on cDCs

after infection with NYVAC-C-KC-DB19R. In contrast, gene

expression analysis showed that NYVAC-C-KC-DB19R presented

the effects that were also observed with both single approaches;

increased gene expression of IFN-induced genes and genes

involved in antigen processing and presentation.

Infection with NYVAC-C-KC showed that pathways involved

in viral replication process and viral infectious cycle were enriched,

which confirms the replication capacity of the mutant virus in

human primary cells, cDCs and pDCs. Indeed, enhanced HIV

transgene expression was observed in moDCs, as well as HeLa

cells, which in turn correlates with robust cytokine production by

HIV-specific CD8 T cells in a cross-presentation assay. Although

restoration of replication competence resulted in enhanced

transgene expression, the expression levels differed between

different human cell types (figure 6), possibly reflecting different

kinetics in moDCs compared to HeLa cells. Since the HeLa cell

line is a human papillomavirus infected cervical cancer immortal

cell line, we expect primary human cells to behave like moDCs.

Gag expression in NYVAC-C infected moDCs was very low, but

increased upon infection with replication-competent NYVAC-C-

KC. This is also supported by the increased expression levels of

genes involved in the viral infectious life cycle in NYVAC-C-KC

infected cDCs, in contrast to NYVAC-C infected cDCs (figure S2).

Gene array analysis showed numerous other gene expressions,

quite apart from those mentioned above that are significantly up-

or down-regulated indicating the effect of recombinant NYVAC in

infected DCs. Since it is beyond the scope of this paper to

extensively analyze and discuss all genes, we have not analyzed the

functional relevance of these genes.

Since NYVAC also infects non-hematopoietic cells and the route

of administration determines the cell types that are infected, cross-

presentation probably plays a major role in the induction of vaccinia

virus-induced CD8 T-cell responses [47,48]. Therefore, we studied

the ability to stimulate HIV- and vaccinia-specific CD8 T cells in a

cross-presentation assay in which moDCs present antigens from

apoptotic, infected HeLa cells. In accordance with increased Gag

expression levels in NYVAC-C-KC infected HeLa cells, we

observed high levels of cytokine producing HIV-specific CD8 T

cells after incubation with cross-presenting moDCs. Moreover,

increased cytokine production was also observed for vaccinia-

specific CD8 T cells. In addition, infection of PBMCs from a long-

term non-progressor with replication-competent viruses resulted in

proliferation of HIV-specific memory CD8 T cells. Furthermore,

gene array analysis showed improved antigen processing and

presentation including enriched proteasome complex pathways,

consistent with improved HIV-specific T-cell proliferation.

The replication-competent NYVAC-C-KC virus showed en-

hanced antigen expression and presentation to HIV- and vaccinia-

specific CD8 T cells without inducing maturation of (cross-

presenting) dendritic cells. These assays, however, have all been

performed with either vaccinia- or HIV-specific T cells obtained from

vaccinated or infected individuals, respectively, and were performed

in vitro. The observations described in the present study with these

clonal CD8 T cells were largely independent of costimulation.

Costimulation is, however, important to prime T-cell responses in vivo.

Previously, Jackson et al. showed that deletion of the B19R gene

from the vaccinia strain Wyeth had no effect on immunogenicity

in mice [49]. In contrast, we here performed an in-depth analysis

of infected DCs. The present study clearly shows that we were able

to generate a phenotype in DC by selectively deletion or

reinsertion of specific genes from the viral backbone. As described

by Jackson et al., a single deletion of the B19R gene did not affect

in vivo immunogenicity and therefore we combined the deletion

with the restoration of replication competence. Unfortunately, the

species specificity of the B19R protein might interfere with in vivo

immunogenicity analysis in mice, such as performed by Jackson

et al., thereby limiting the pre-clinical analysis. The in vivo

immunogenicity of the combined recombinant NYVAC-C-KC-

DB19R thus remains to be determined, for which the non-human

primates is a suitable model.

The here described improved recombinant NYVAC vectors

show potential applicability to HIV vaccination. Although the

Figure 8. HIV-1-specific CD8 T-cell responses of unmodified
and modified NYVAC using a CFSE proliferation assay. NYVAC
vectors, either containing the HIV-1 clade C trangenes or empty, were
evaluated in vitro using cryopreserved PBMCs from HIV-1-infected
subjects. Cell proliferation using the CFSE dilution assay was measured
6 days after stimulation. At the end of the stimulation period, cells were
stained for CD3, CD4, CD8 and a viability marker and analyzed by flow
cytometry. Of note, NYVAC viruses were tested in a dose-dependent
manner (ranging from 107–104 PFU, i.e. corresponding to a range of
MOI going from 10-0.01). Shown is the proportion of proliferating cells
(i.e. CFSElow cells) gated on live CD3+CD8+ T cells after 6 days of in vitro
stimulation with the different doses of virus. Mean values, corrected for
empty NYVAC background, and standard deviation of at least six
experiments are shown. No proliferation of HIV-specific CD8 T cells was
observed after infection with NYVAC-C and the B19R deletion mutant.
In contrast, 15-20% CFSElow CD8 T cells were present after NYVAC-C-KC
or NYVAC-C-KC-DB19R infection, indicating increased proliferation after
infection.
doi:10.1371/journal.pone.0016819.g008
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effect of the B19R deletion on type-I IFN production is clearly

restrained by the introduction of replication competence, the

NYVAC-C-KC-DB19R double mutant performs better as assess-

ed by transcription profiling. This mutant shows improved

expression of pathways enriched in IFN-induced genes and

antigen processing and presentation pathways compared to the

NYVAC-C-KC variant alone.

In conclusion, we have designed an improved candidate

NYVAC-HIV vaccine. By restoring replication competence we

were able to increase the expression of the transgene, which is

important for the ability to induce robust T-cell responses in vivo.

That enhanced transgene expression leads to enhanced cross-

presentation to HIV- and vaccinia-specific T cells is expected from

the observations of others [50–52] that level and stability of

antigen expression are the two most important factors in the

efficiency of cross-presentation and cross-priming.

Materials and Methods

Ethics statement
The Leiden University Medical Center, the University of

Washington, and the Institute for Research in Biomedicine

obtained written, informed consent from every blood donor in

order to collect PBMC samples and approved the use of the

material for this study. The study was approved by the institutional

review board and by the ethics committee from the Centre

Hospitalier Universitaire Vaudois and all patients gave written

informed consent to use their material to make cell lines.

Cells
Monocyte derived dendritic cells (moDCs) were obtained from

cryopreserved or freshly isolated peripheral blood mononuclear

cells (PBMCs) from buffy coats of healthy blood donors. CD14+
monocytes were isolated from PBMCs by positive selection with

CD14 microbeads (Miltenyi Biotec). The obtained monocytes

were plated at 16106 cells/ml and subsequently cultured with

GM-CSF (800 U/ml) and IL-4 (500 U/ml) for 5 days to

differentiate into moDCs as described previously [53]. Fresh

medium containing GM-CSF and IL-4 was added at day 2.

Circulating conventional DCs (cDCs) and plasmacytoid DCs

(pDCs) were obtained from freshly isolated PBMC by positive

selection after staining with fluorescein isothiocyanate (FITC)-

labeled anti-BDCA-1 (clone AD5-8E7) and phycoerythrin (PE)-

labeled anti-BDCA-4 (clone AD5-17F6), respectively, followed by

positive selection using anti-FITC or anti-PE microbeads (all from

Milteny Biotec) and cell sorting. Purity of sorted DC populations

was over 99%.

HeLa cells (ATCC) were cultured in IMDM containing 8%

fetal bovine serum (PAA) and 80 IU/ml Natrium-penicillin

(Astellas Pharma). Baby hamster kidney (BHK)-21 cells (ATCC)

were grown in MEM plus 5% fetal bovine serum.

HIV-specific CD8 T cells were obtained from an HIV-1

seropositive long-term non-progressor. First, total PBMCs were

depleted for CD4 T cells using CD4 dynabeads (Dynal) according

to the manufacturer’s protocol. The enriched CD8 T-cell

population was subsequently stimulated with the specific peptide

(5 mg/ml), irradiated HLA-matched PBMCs, 10% human T cell

growth factor (TCGF, Zeptomatrix), human IL-15 (5 ng/ml,

Tebu-bio), and 10% human AB serum. Specificity was confirmed

after 4 weeks of culture. Although these CD8 T cells were not

cloned from a limiting dilution, 99.8% of the T cells expressed the

Vb22 TCR, suggesting that these cells were obtained from a single

precursor and can be considered clonal. Cells were restimulated

every two weeks. Cells were left untreated for at least two weeks

before use in antigen presentation assay.

Vaccinia-specific CD8 T cell clone CM.A2, derived from an

HLA-A*0201 donor, was derived as described previously [54].

Clone CM.A2 was tested against a panel of known HLA-A*0201-

restricted epitopes [55] and shown to be specific for WR082 18–26

(data not shown). Two other vaccinia-specific CD8 T cell clones

were used and have shown similar results.

All cell cultures were kept at 37uC in a 5% CO2 incubator.

Viruses
The generation of the recombinant NYVAC lacking the B19R

gene or expressing the C7L and K1L genes is described elsewhere

(Kibler et al., submitted for publication). The nomenclature and

short description of the recombinant NYVAC variants is provided

in table 1. Virological and pathogenic characterization of these

vectors in cultured cells and in mice is described (Kibler et al.,

submitted for publication).

Determining replication of viral vectors
Human HeLa cells or baby hamster kidney (BHK) cells were

infected at a multiplicity of infection (MOI) of 5 with NYVAC-C,

NYVAC-C-KC or NYVAC-C-KC-DB19R. Cultures were har-

vested immediately after infection or at 3, 12 and 24 hours post

infection. Virus was released from cells by multiple rounds of

freezing and thawing and titered on permissive BHK cells or

BSC40 cells by plaque staining assays.

HIV-1 Gag expression
The expression of Gag protein was measured in moDCs and

HeLa cells at 6 and 24 hours after infection. To this end, cells were

infected for one hour at MOI 1 and 5 and subsequently washed

thoroughly. After 6 and 24 hours incubation, cells were harvested

and Gag expression was determined by intracellular staining with

an anti-Gag specific antibody (KC57, Beckman Coulter). Cells

were analyzed on a FACSCalibur using CellQuest (BD). FACS

data were analyzed with FlowJo (Tree Star, Inc.).

Infection of cDCs and flow cytometry
cDCs or moDC obtained from freshly isolated PBMC were

infected with the different viruses at three different MOIs (0.1, 0.3

and 1). After one hour of incubation, the cells were washed

extensively and plated into 24-well plates. Supernatant was

harvested at 24 and 48 hours post infection for detection of IFN-

a. Forty-eight hours after infection, cells were harvested and fixed in

4% paraformaldehyde. Cells were subsequently incubated with a-

CD86 PE-Cy5 (clone IT2.2), a-CD80 PE-Cy5 (clone 2D10.4), a-

CD11c Alexa Fluor 700 (clone 3.9) (all from eBiosciences), a-CD40

APC, a-HLA-ABC FITC, a-HLA-DR PE, a-CD70 PE (all from

Becton Dickinson). Cells were analyzed on a LSRII flow cytometer

using DIVA (BD). FACS data were analyzed with FlowJo.

IFN-a ELISA
Supernatant from infected DCs was harvested 48 hours post

infection. IFN-a production was analyzed by ELISA (human IFN

ELISA kit; PBL Interferonsource) according to the manufacturer’s

protocol.

Antigen presentation assays
Antigen presentation to HIV- and vaccinia-specific CD8 T cells

was studied using moDCs cross-presenting antigens from HeLa

cells that were infected at different MOI. In addition, the cytokine

production of HIV- and VACV-specific CD8 T cells was assessed.
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For that, HeLa cells were harvested by EDTA and infected at

different MOI for 1 hour. Cells were extensively washed to remove

residual virus. After overnight incubation, cells were irradiated with

UV-C (200 mW/cm2) to ensure that no residual virus and no viable

cells were present and thus exclude direct presentation. Apoptotic

virus-infected HeLa cells were harvested and added to moDCs at a

2:1 ratio. After 6 hours incubation, HIV- or vaccinia-specific CD8

T cells were added (at approximately 5 T-cell: 1 DC ratio) followed

by overnight culture at 37uC/5%CO2. Brefeldin A (10 mg/ml,

Sigma-Aldrich) was added to retain cytokines within the T cells

allowing the detection of multiple cytokines. After 18 hours,

intracellular cytokine staining (ICS) was performed as described

[56]. Cells were fixed and permeabilized using Cytofix/Cyto-

permTM Fixation/Permeabilization Solution Kit (BD). Cells were

then incubated with a-TNF PE-Cy7 (clone MAb11, eBiosciences),

a-IFN-c FITC, a-IL-2 APC, a-MIP-1b PE (all three from BD) and

a-CD8 PerCP (Dako). After washing, cells were analyzed on a

LSRII flow cytometer using DIVA (BD). FACS data were analyzed

with FlowJo. Net accumulation is the percentage of live CD8+ cells

expressing a specific cytokine upon stimulation with moDCs loaded

with apoptotic virus-infected HeLa cells minus the percentage

expressing the cytokine when NYVAC-wt infected HeLa were used.

P-values were calculated using Mann-Whitney U test using SPSS

16.0 (SPSS Inc).

Ex vivo proliferation assay
Overnight-rested cryo-preserved PBMCs were washed twice,

resuspended at 16106/ml in PBS and incubated for 79 at 37uC
with 0.25 mM 5,6-carboxyfluorescein succinimidyl ester (CFSE,

Molecular Probes, USA) as described [57]. Then, the reaction was

quenched with one volume of FCS and cells were washed twice.

Cells were then cultured (16106 in 1 ml of complete medium) in

the presence of modified and unmodified NYVAC vectors at

different MOIs (ranging from 0.01–10), medium alone (negative

control) or Staphylococcal enterotoxin serotype B (SEB, 40 ng/ml,

positive control). At day 6, cells were harvested, stained for dead

cells using the Aqua LIVE/DEAD stain kit (Invitrogen) and then

with CD3, CD4, CD8. After fixation, cells were acquired on an

LSRII flow cytometer using DIVA (BD). FACS data were

analyzed with FlowJo (8.8.2). The number of lymphocyte-gated

events ranged between 16105 and 56105 in all experiments. P-

values were calculated using Mann-Whitney U test using SPSS

16.0.

Microarray data analysis
Infected cDCs and pDCs were harvested 6 hours post infection

and the RNA was extracted using the RNeasy Mini Kit (Qiagen)

according to the manufacturer’s protocol. Quantification and

quality control of extracted RNA was obtained as previously

described [58]. Briefly, RNA quantification was performed using a

spectrophotometer (NanoDrop Technologies) and RNA quality

was assessed using the Experion automated electrophoresis system

(Bio-Rad). Total RNA was then amplified and labeled using the

Illumina TotalPrep RNA Amplification kit, which is based on the

Eberwine amplification protocol [59]. The biotinylated cRNA was

hybridized onto Illumina Human RefSeq-8 BeadChips V2 and V3

at 58uC for 20 hrs and quantified using Illumina BeadStation

500GX scanner and Illumina BeadStudio v3.

Illumina probe data were exported from BeadStudio as raw

data and were screened for quality; samples failing chip visual

inspection and control examination were removed. Probeset from

the two Illumina platforms were mapped to a common probeset Id

using a mapping file provided by Illumina. A dataset containing

probeset common to both platforms was then used for subsequent

steps. Gene expression data was preprocessed and analyzed using

Bioconductor (www.bioconductor.org), an open-source software

library for the analysis of genomic data based on R (version 2.9), a

language and environment for statistical computing and graphics

(www.r-project.org). The R software was used to quantile-

normalized, and to minimum-replaced (a surrogate-replacement

policy) values below background using the mean background value

of the built-in Illumina probe controls as an alternative to

background subtraction (which may introduce negative values) to

reduce ‘over inflated’ expression ratios in subsequent steps.

Bioconductor’s genefilter package was used to filter out genes

with low expression and insufficient variation in expression across

all samples tested. Expression values retained after this filtering

process presented intensities greater than 100 units in at least 2

samples and a log base 2 scale of at least 0.2 for the interquartile

range (IQR) across all tested samples. The resulting matrix

showing filtered probeset as rows and samples as columns was used

as input for subsequent statistical analysis.

To identify differentially expressed genes, we used Bioconduc-

tor’s ‘‘Linear models for microarray analysis’’ (LIMMA) [60]

package which estimates the fold-change between DCs infected

with different pox viruses by fitting a linear model and using an

empirical Bayes method to moderate standard errors of the

estimated log-fold changes for expression values from each gene. P

values from the resulting comparison were adjusted for multiple

testing according to the method of Benjamini and Hochberg [61].

This method controls the false discovery rate, which was set to

0.05.

To determine whether our expression data sets obtained from

gene expression profiling of dendritic cells infected with different

poxviruses are enriched in known biological pathways, we used

Gene Set Enrichnment Analysis (GSEA), a non-parametric

annotation-driven statistical analysis method. To evaluate the

degree of enrichment the GSEA method calculates an Enrichment

Score (ES) based on Kolmogorov-Smirnov statistics. We system-

atically tested gene sets from the Molecular signature Database

(MsigDB, http://www.broad.mit.edu/gsea/msigdb) which are

composed of (1) 1,892 gene sets (C2 collection) collected from

different sources such as online known canonical and metabolic

pathways and list of differentially expressed genes from publica-

tions available in PubMed, to which we added a collection of 28

immune related gene sets described by Chaussabel, et al. [43]; (2)

837 gene sets (C3 collection) that contain genes that share a cis-

regulatory motif that is conserved across the human, mouse, rat,

and dog genomes and represent known or likely regulatory

elements in promoters and 3’- UTRs; (3) 1454 gene sets (C5

collection) that contain Gene Ontology terms. The statistical

significance of a gene set’s ES is estimated by an empirical genes-

based permutation test procedure. To account for multiple

hypotheses testing, GSEA normalizes the ES for each gene set

to account for variation in set sizes and calculates a false discovery

rate (FDR) corresponding to each normalized ES.

Microarray data are Minimum Information About a Micro-

array Experiment (MIAME)-compliant, and the raw data have

been deposited in the Gene Expression Omnibus (GEO), accession

number GSE26239.

Supporting Information

Figure S1 GSEA of enriched pathways in NYVAC-C-DB19R

infected DCs. GSEA of the list of genes ranked according to the

expression difference between NYVAC-C and NYVAC-C-KC-

DB19R in pDCs (A–C) and cDCs (D–E). GSEA using C2 database

(A, D), C3 database (B, E) and C5 database (E) is shown. Figure
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shows the pattern of enrichment using selected significant

pathways and their top 5 genes members selected from the

leading edge subset (genes that contribute most to the enrichment

score). The left gray and blue section of the figure shows the

pathway membership for each gene (blue, present in the pathway;

grey, absent). The heatmap shows the expression level of each

gene scaled to have mean zero and standard deviation one (red,

up-regulated; green, down-regulated). Each column in the

heatmap represents a replicate (between 2 and 15). The genes

indicated in the right vertical line represent some of the genes that

are involved in the indicated pathways. The color key is depicted

on the right side of the figure. NYVAC-C-DB19R induced the

enhanced expression of genes in the type-I IFN-induced gene

pathways and IL-1R in pDCs as well as cDCs.

(EPS)

Figure S2 GSEA of enriched pathways in NYVAC-C-KC

infected DCs. GSEA of the list of genes ranked according to the

expression difference between NYVAC-C and NYVAC-C-KC-

DB19R in cDCs (A–B) and pDCs (C–D). GSEA using C2 database

(A, C) and C3 database (B, D) is shown. Figure shows the pattern

of enrichment using selected significant pathways and their top 5

genes members selected from the leading edge subset (genes that

contribute most to the enrichment score). The left gray and blue

section of the figure shows the pathway membership for each gene

(blue, present in the pathway; grey, absent). The heatmap shows

the expression level of each gene scaled to have mean zero and

standard deviation one (red, up-regulated; green, down-regulated).

Each column in the heatmap represents a replicate (between 12

and 18). The genes indicated in the right vertical line represent

some of the genes that are involved in the indicated pathways. The

color key is depicted on the right side of the figure.

(EPS)

Table S1 Genes uniquely upregulated in infected cDC after

infection with NYVAC-C-KC.

(XLS)

Table S2 Genes uniquely upregulated in infected cDC after

infection with NYVAC-C-KC-DB19R.

(XLS)

Table S3 Genes uniquely upregulated in infected cDC after

infection with NYVAC-C-DB19R.

(XLS)

Table S4 Genes uniquely upregulated in infected pDC after

infection with NYVAC-C-KC.

(XLS)

Table S5 Genes uniquely upregulated in infected pDC after

infection with NYVAC-C-KC-DB19R.

(XLS)

Table S6 Genes uniquely upregulated in infected pDC after

infection with NYVAC-C-DB19R.

(XLS)

Table S7 Common genes significantly up- or downregulated in

DCs infected with either NYVAC-C-DB19R, NYVAC-C-KC or

NYVAC-C-KC-DB19R.

(XLS)

Table S8 List of genes involved in the antigen processing and

presentation pathway and B-cell function pathway.

(XLS)
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