156 research outputs found

    Can a supernova be located by its neutrinos?

    Get PDF
    A future core-collapse supernova in our Galaxy will be detected by several neutrino detectors around the world. The neutrinos escape from the supernova core over several seconds from the time of collapse, unlike the electromagnetic radiation, emitted from the envelope, which is delayed by a time of order hours. In addition, the electromagnetic radiation can be obscured by dust in the intervening interstellar space. The question therefore arises whether a supernova can be located by its neutrinos alone. The early warning of a supernova and its location might allow greatly improved astronomical observations. The theme of the present work is a careful and realistic assessment of this question, taking into account the statistical significance of the various neutrino signals. Not surprisingly, neutrino-electron forward scattering leads to a good determination of the supernova direction, even in the presence of the large and nearly isotropic background from other reactions. Even with the most pessimistic background assumptions, SuperKamiokande (SK) and the Sudbury Neutrino Observatory (SNO) can restrict the supernova direction to be within circles of radius 55^\circ and 2020^\circ, respectively. Other reactions with more events but weaker angular dependence are much less useful for locating the supernova. Finally, there is the oft-discussed possibility of triangulation, i.e., determination of the supernova direction based on an arrival time delay between different detectors. Given the expected statistics we show that, contrary to previous estimates, this technique does not allow a good determination of the supernova direction.Comment: 11 pages including 2 figures. Revised version corrects typos, adds some brief comment

    Electromigration-Induced Flow of Islands and Voids on the Cu(001) Surface

    Full text link
    Electromigration-induced flow of islands and voids on the Cu(001) surface is studied at the atomic scale. The basic drift mechanisms are identified using a complete set of energy barriers for adatom hopping on the Cu(001) surface, combined with kinetic Monte Carlo simulations. The energy barriers are calculated by the embedded atom method, and parameterized using a simple model. The dependence of the flow on the temperature, the size of the clusters, and the strength of the applied field is obtained. For both islands and voids it is found that edge diffusion is the dominant mass-transport mechanism. The rate limiting steps are identified. For both islands and voids they involve detachment of atoms from corners into the adjacent edge. The energy barriers for these moves are found to be in good agreement with the activation energy for island/void drift obtained from Arrhenius analysis of the simulation results. The relevance of the results to other FCC(001) metal surfaces and their experimental implications are discussed.Comment: 9 pages, 13 ps figure

    Boron Phosphide Films by Reactive Sputtering Searching for a P Type Transparent Conductor

    Get PDF
    With an indirect band gap in the visible and a direct band gap at a much higher energy, boron phosphide BP holds promise as an unconventional p type transparent conductor. This work reports on reactive sputtering of amorphous BP films, their partial crystallization in a P containing annealing atmosphere, and extrinsic doping by C and Si. The highest hole concentration to date for p type BP 5 1020 cm amp; 8722;3 is achieved using C doping under B rich conditions. Furthermore, bipolar doping is confirmed to be feasible in BP. An anneal temperature of at least 1000 C is necessary for crystallization and dopant activation. Hole mobilities are low and indirect optical transitions are stronger than that predicted by theory. Low crystalline quality probably plays a role in both cases. High figures of merit for transparent conductors might be achievable in extrinsically doped BP films with improved crystalline qualit

    Balloon Measurements of Cosmic Ray Muon Spectra in the Atmosphere along with those of Primary Protons and Helium Nuclei over Mid-Latitude

    Get PDF
    We report here the measurements of the energy spectra of atmospheric muons and of the cosmic ray primary proton and helium nuclei in a single experiment. These were carried out using the MASS superconducting spectrometer in a balloon flight experiment in 1991. The relevance of these results to the atmospheric neutrino anomaly is emphasized. In particular, this approach allows uncertainties caused by the level of solar modulation, the geomagnetic cut-off of the primaries and possible experimental systematics to be decoupled in the comparison of calculated fluxes of muons to measured muon fluxes. The muon observations cover the momentum and depth ranges of 0.3-40 GeV/c and 5-886 g/cmsquared, respectively. The proton and helium primary measurements cover the rigidity range from 3 to 100 GV, in which both the solar modulation and the geomagnetic cut-off affect the energy spectra at low energies.Comment: 31 pages, including 17 figures, simplified apparatus figure, to appear in Phys. Rev.

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Calculation of the Flux of Atmospheric Neutrinos

    Full text link
    Atmospheric neutrino-fluxes are calculated over the wide energy range from 30 MeV to 3,000 GeV for the study of neutrino-physics using the data from underground neutrino-detectors. The atmospheric muon-flux at high altitude and at sea level is studied to calibrate the neutrino-fluxes at low energies and high energies respectively. The agreement of our calculation with observations is satisfactory. The uncertainty of atmospheric neutrino-fluxes is also studied.Comment: 51 page

    Relativistic Laser-Matter Interaction and Relativistic Laboratory Astrophysics

    Full text link
    The paper is devoted to the prospects of using the laser radiation interaction with plasmas in the laboratory relativistic astrophysics context. We discuss the dimensionless parameters characterizing the processes in the laser and astrophysical plasmas and emphasize a similarity between the laser and astrophysical plasmas in the ultrarelativistic energy limit. In particular, we address basic mechanisms of the charged particle acceleration, the collisionless shock wave and magnetic reconnection and vortex dynamics properties relevant to the problem of ultrarelativistic particle acceleration.Comment: 58 pages, 19 figure

    Contribuição da heterogeneidade de linhas de regressão para a recomendação de novas cultivares

    Get PDF
    O objetivo deste trabalho foi evidenciar a contribuição da análise da heterogeneidade das linhas de regressão para a recomendação de novas cultivares, pela metodologia de Eberhart & Russell. Um experimento com dez genótipos de arroz, avaliados em oito ambientes, foi utilizado para ilustração da metodologia. Utilizou-se o delineamento de blocos ao acaso com três repetições. A soma dos quadrados da interação genótipo x ambiente (GxA) foi decomposta para avaliação da heterogeneidade das linhas de regressão e dos desvios acumulados da linearidade. A heterogeneidade das linhas de regressão foi analisada com o uso do teste t sobre os coeficientes de regressão linear dos genótipos. Os dois componentes ortogonais da interação GxA foram significativos. A análise da heterogeneidade das linhas de regressão permitiu detectar incoerências na adaptabilidade dos genótipos, o que diminui as chances de recomendações equivocadas de cultivares. Os genótipos foram classificados de acordo com a eficiência da metodologia de Eberhart & Russell em explicar a natureza do desempenho genotípico diante das mudanças nos ambientes. A avaliação da heterogeneidade das linhas de regressão contribui para a recomendação mais efetiva de novas cultivares com a metodologia de Eberhart & Russell
    corecore