27 research outputs found

    Nutrient induced changes in Sun-Induced Fluorescence emission in a Mediterranean grassland

    Get PDF
    Sun induced fluorescence (SIF), the radiation flux emitted by plant chlorophylls molecules in the 650-800 nm spectral window, is considered an indicator of photosynthetic performance. Recently it has been shown that SIF can track changes in light use efficiency (LUE), and therefore it is a good predictor of gross primary production (GPP) at various scales, from leaves and ecosystem to regional and global scale. Although SIF has been successfully used to predict GPP in various ecosystems, the mechanistic link between GPP and SIF remains not fully understood, and especially the effect of function and structure on SIF at the canopy scale remains an active area of research. SIF is emitted by the whole canopy, but only a fraction of the total emission is observed with remote sensing techniques. The escape probability of SIF (Fesc) controls the amount of SIF scattered by the canopy and is integral to separate the effect of canopy structure and function on the fluorescence signal. In this contribution we make use of data collected at the research site Majadas del Tietar, a Mediterranean grassland manipulated with Nitrogen and Phosphorus. Using the SCOPE model (Soil Canopy Observation Photochemistry and Energy fluxes) we obtain Fesc and we analyse how Top of canopy SIF and emitted SIF vary in response to the fertilization. With a combination of processes-based modelling and data driven analysis, such as relative importance analysis and structural equation modelling, we unravel the processes and causal relationship that are at the base of the GPP - SIF relationship. We show that the nutrient fertilization had an effect on plant composition, and therefore canopy structure, but also plant functioning. Nitrogen induced changes in biodiversity mainly affect leaf angle distribution of the canopy and therefore scattering properties such as Fesc. The nitrogen fertilization is also responsible for a change in plant functioning, with altered SIF emission. The simultaneous change of both canopy and structure causes the fertilization effect to be visible mainly at the emission level, but not at top of canopy, as the variation in canopy structure masks the change observed at leaf level. This contribution advances the knowledge of the highly complex dynamics involved in the GPP-SIF relationship. In depth understanding of the mechanistic processes is required to fully take advantage of the increasingly prevalent SIF data streams

    Drivers of spatio-temporal variability of carbon dioxide and energyfluxes ina Mediterranean savanna ecosystem

    Get PDF
    To understand what is driving spatial flux variability within a savanna type ecosystem in central Spain, data of three co-located eddy covariance (EC) towers in combination with hyperspectral airborne measurements and footprint analysis were used. The three EC systems show consistent, and unbiased mass and energy fluxes. Nevertheless, instantaneous between-tower flux differences i.e. paired half hourly fluxes, showed large variability. A period of 13 days around an airborne hyperspectral campaign was analyzed and proved that betweentower differences can be associated to biophysical properties of the sampled footprint areas. At high photosynthetically active radiation (PAR) net ecosystem exchange (NEE) was mainly controlled by chlorophyll content of the vegetation (estimated through MERIS Terrestrial Chlorophyll Index (MTCI)), while sensible heat flux (H) was driven by surface temperature. The spatial variability of biophysical properties translates into flux variability depending on the location and size of footprints. For H, negative correlations were found with surface temperature for between-tower differences, and for individual towers in time, meaning that higher H was observed at lower surface temperatures. High aerodynamic conductance of tree canopies reduces the canopy surface temperature and the excess energy is relieved as H. Therefore, higher tree canopy fractions yielded to lower surface temperatures and at the same time to higher H. For NEE, flux differences between towers were correlated to differences in MTCI of the respective footprints, showing that higher chlorophyll content of the vegetation translates into more photosynthetic CO2 uptake, which controls NEE variability. Between-tower differences of latent heat fluxes (LE) showed no consistent correlation to any vegetation index (VI), or structural parameter e.g. tree-grass-fraction. This missing correlation is most likely caused by the large contribution of soil evaporation to ecosystem LE, which is not captured by any of the biophysical and structural properties. To analyze if spatial heterogeneity influences the uncertainty of measured fluxes three different measures of uncertainty were compared: the standard deviation of the marginal distribution sampling (MDS), the two-towerapproach (TTA), and the variance of the covariance (RE). All three uncertainty estimates had similar means and distributions at the individual towers while the methods were significantly different to each other. The uncertainty estimates increased from RE over TTA to MDS, indicating that different components like space, time, meteorology, and phenology are factors, which affect the uncertainty estimates. Differences between uncertainty estimates from the RE and TTA indicate that spatial heterogeneity contributes significantly to the ecosystem-flux uncertaintyinfo:eu-repo/semantics/publishedVersio

    Reviews and syntheses : Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities

    Get PDF
    Evaporation (E) and transpiration (T) respond differently to ongoing changes in climate, atmospheric composition, and land use. It is difficult to partition ecosystem-scale evapotranspiration (ET) measurements into E and T, which makes it difficult to validate satellite data and land surface models. Here, we review current progress in partitioning E and T and provide a prospectus for how to improve theory and observations going forward. Recent advancements in analytical techniques create new opportunities for partitioning E and T at the ecosystem scale, but their assumptions have yet to be fully tested. For example, many approaches to partition E and T rely on the notion that plant canopy conductance and ecosystem water use efficiency exhibit optimal responses to atmospheric vapor pressure deficit (D). We use observations from 240 eddy covariance flux towers to demonstrate that optimal ecosystem response to D is a reasonable assumption, in agreement with recent studies, but more analysis is necessary to determine the conditions for which this assumption holds. Another critical assumption for many partitioning approaches is that ET can be approximated as T during ideal transpiring conditions, which has been challenged by observational studies. We demonstrate that T can exceed 95% of ET from certain ecosystems, but other ecosystems do not appear to reach this value, which suggests that this assumption is ecosystem-dependent with implications for partitioning. It is important to further improve approaches for partitioning E and T, yet few multi-method comparisons have been undertaken to date. Advances in our understanding of carbon-water coupling at the stomatal, leaf, and canopy level open new perspectives on how to quantify T via its strong coupling with photosynthesis. Photosynthesis can be constrained at the ecosystem and global scales with emerging data sources including solar-induced fluorescence, carbonyl sulfide flux measurements, thermography, and more. Such comparisons would improve our mechanistic understanding of ecosystem water fluxes and provide the observations necessary to validate remote sensing algorithms and land surface models to understand the changing global water cycle.Peer reviewe

    Ecosystem transpiration and evaporation : Insights from three water flux partitioning methods across FLUXNET sites

    Get PDF
    We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three dailyTestimates shows high correlation among methods (Rbetween .89 and .94), but a spread in magnitudes ofT/ET (evapotranspiration) from 45% to 77%. When compared at six sites with concurrent EC and sap flow measurements, all three EC-basedTestimates show higher correlation to sap flow-basedTthan EC-based ET. The partitioning methods show expected tendencies ofT/ET increasing with dryness (vapor pressure deficit and days since rain) and with leaf area index (LAI). Analysis of 140 sites with high-quality estimates for at least two continuous years shows thatT/ET variability was 1.6 times higher across sites than across years. Spatial variability ofT/ET was primarily driven by vegetation and soil characteristics (e.g., crop or grass designation, minimum annual LAI, soil coarse fragment volume) rather than climatic variables such as mean/standard deviation of temperature or precipitation. Overall,TandT/ET patterns are plausible and qualitatively consistent among the different water flux partitioning methods implying a significant advance made for estimating and understandingTglobally, while the magnitudes remain uncertain. Our results represent the first extensive EC data-based estimates of ecosystemTpermitting a data-driven perspective on the role of plants' water use for global water and carbon cycling in a changing climate.Peer reviewe

    Evergreen broadleaf greenness and its relationship with leaf flushing, aging, and water fluxes

    Get PDF
    13 PĂĄg. Departamento de Medio Ambiente y AgronomĂ­a​ (INIA)Remote sensing capabilities to monitor evergreen broadleaved vegetation are limited by the low temporal variability in the greenness signal. With canopy greenness computed from digital repeat photography (PhenoCam), we investigated how canopy greenness related to seasonal changes in leaf age and traits as well as variation of trees’ water fluxes (characterized by sap flow and canopy conductance). The results showed that sprouting leaves are mainly responsible for the rapid increase in canopy green chromatic coordinate (GCC) in spring. We found statistically significantly differences in leaf traits and spectral properties among leaves of different leaf ages. Specifically, mean GCC of young leaves was 0.385 ± 0.010 (mean ± SD), while for mature and old leaves was 0.369 ± 0.003, and 0.376 ± 0.004, respectively. Thus, the temporal dynamics of canopy GCC can be explained by changes in leaf spectral properties and leaf age. Sap flow and canopy conductance are both well explained by a combination of environmental drivers and greenness (96% and 87% of the variance explained, respectively). In particular, air temperature and vapor pressure deficit (VPD) explained most of sap flow and canopy conductance variance, respectively. Besides, GCC is an important explanatory variable for variation of canopy conductance may because GCC can represent the leaf ontogeny information. We conclude that PhenoCam GCC can be used to identify the leaf flushing for evergreen broadleaved trees, which carries important information about leaf ontogeny and traits. Thus, it can be helpful for better estimating canopy conductance which constraints water fluxes.The authors acknowledge the Alexander von Humboldt Foundation for supporting this research with the Max Planck Prize to Markus Reichstein. Yunpeng Luo and Mirco Migliavacca gratefully acknowledge the financial support from the China Scholarship Council. ADR acknowledges support for the PhenoCam network from the National Science Foundation ( DEB- 1702697 ). Javier Pacheco-Labrador and Mirco Migliavacca acknowledge the German Aerospace Center (DLR) project OBEF-Accross2 “The Potential of Earth Observations to Capture Patterns of Biodiversity” (Contract No. 50EE1912). The research also received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 721995 and Ministerio de EconomĂ­ay Competitividad through FLUXPEC CGL2012-34383 and SynerTGE CGL2015-G9095-R (MINECO/FEDER, UE) projects.Peer reviewe

    [In Press] Theory and tests for coordination among hydraulic and photosynthetic traits in co‐occurring woody species

    No full text
    Co-occurring plants show wide variation in their hydraulic and photosynthetic traits. Here, we extended ‘least-cost’ optimality theory to derive predictions for how variation in key hydraulic traits potentially affects the cost of acquiring and using water in photosynthesis and how this, in turn, should drive variation in photosynthetic traits. We tested these ideas across 18 woody species at a temperate woodland in eastern Australia, focusing on hydraulic traits representing different aspects of plant water balance, that is storage (sapwood capacitance, CS), demand vs supply (branch leaf : sapwood area ratio, AL : AS and leaf : sapwood mass ratio and ML : MS), access to soil water (proxied by predawn leaf water potential, ιPD) and physical strength (sapwood density, WD). Species with higher AL : AS had higher ratio of leaf-internal to ambient CO2 concentration during photosynthesis (ci : ca), a trait central to the least-cost theory framework. CS and the daily operating range of tissue water potential (∆ι) had an interactive effect on ci : ca. CS, WD and ιPD were significantly correlated with each other. These results, along with those from multivariate analyses, underscored the pivotal role leaf : sapwood allocation (AL : AS), and water storage (CS) play in coordination between plant hydraulic and photosynthetic systems. This study uniquely explored the role of hydraulic traits in predicting species-specific photosynthetic variation based on optimality theory and highlights important mechanistic links within the plant carbon–water balance

    Terrestrial gross primary production inferred from satellite fluorescence and vegetation models

    No full text
    Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth’s carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar-induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7– 8PgCyr?1 from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr?1) and enhanced GPP in tropical forests (~3.7 Pg C yr?1). This leads to improvements in the structure of the seasonal cycle, including earlier dry sea- son GPP loss and enhanced peak-to-trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40–70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well-suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP responseJRC.H.7-Climate Risk Managemen
    corecore