4,977 research outputs found
Multiplatform serum metabolic phenotyping combined with pathway mapping to identify biochemical differences in smokers
Aim: Determining perturbed biochemical functions associated with tobacco smoking should be helpful for establishing causal relationships between exposure and adverse events. Results: A multiplatform comparison of serum of smokers (n = 55) and never-smokers (n = 57) using nuclear magnetic resonance spectroscopy, UPLC–MS and statistical modeling revealed clustering of the classes, distinguished by metabolic biomarkers. The identified metabolites were subjected to metabolic pathway enrichment, modeling adverse biological events using available databases. Perturbation of metabolites involved in chronic obstructive pulmonary disease, cardiovascular diseases and cancer were identified and discussed. Conclusion: Combining multiplatform metabolic phenotyping with knowledge-based mapping gives mechanistic insights into disease development, which can be applied to next-generation tobacco and nicotine products for comparative risk assessment
Intergenerational change and familial aggregation of body mass index
The relationship between parental BMI and that of their adult offspring, when increased adiposity can become a clinical issue, is unknown. We investigated the intergenerational change in body mass index (BMI) distribution, and examined the sex-specific relationship
between parental and adult offspring BMI. Intergenerational
change in the distribution of adjusted BMI in 1,443
complete families (both parents and at least one offspring)
with 2,286 offspring (1,263 daughters and 1,023 sons) from
the west of Scotland, UK, was investigated using quantile
regression. Familial correlations were estimated from
linear mixed effects regression models. The distribution
of BMI showed little intergenerational change in the normal
range (\25 kg/m2), decreasing overweightness (25–
\30 kg/m2) and increasing obesity (C30 kg/m2). Median
BMI was static across generations in males and decreased
in females by 0.4 (95% CI: 0.0, 0.7) kg/m2; the 95th percentileincreased by 2.2 (1.1, 3.2) kg/m2 in males and 2.7
(1.4, 3.9) kg/m2 in females. Mothers’ BMI was more
strongly associated with daughters’ BMI than was fathers’
(correlation coefficient (95% CI): mothers 0.31 (0.27,
0.36), fathers 0.19 (0.14, 0.25); P = 0.001). Mothers’ and
fathers’ BMI were equally correlated with sons’ BMI
(correlation coefficient: mothers 0.28 (0.22, 0.33), fathers
0.27 (0.22, 0.33). The increase in BMI between generations
was concentrated at the upper end of the distribution. This,
alongside the strong parent-offspring correlation, suggests that the increase in BMI is disproportionally greater among
offspring of heavier parents. Familial influences on BMI among middle-aged women appear significantly stronger from mothers than father
Consistency of cruise data of the CARINA database in the Atlantic sector of the Southern Ocean
Initially a North Atlantic project, the CARINA carbon synthesis was extended to include the Southern Ocean. Carbon and relevant hydrographic and geochemical ancillary data from cruises all across the Arctic Mediterranean Seas, Atlantic and Southern Ocean were released to the public and merged into a new database as part of the CARINA synthesis effort. Of a total of 188 cruises, 37 cruises are part of the Southern Ocean, including 11 from the Atlantic sector. The variables from all Southern Ocean cruises, including dissolved inorganic carbon (TCO2), total alkalinity, oxygen, nitrate, phosphate and silicate, were examined for cruise-to-cruise consistency in one collective effort. Seawater pH and chlorofluorocarbons (CFCs) are also part of the database, but the pH quality control (QC) is described in another Earth System Science Data publication, while the complexity of the Southern Ocean physics and biogeochemistry prevented a proper QC analysis of the CFCs. The area-specific procedures of quality control, including crossover analysis between stations and inversion analysis of all crossover data (i.e. secondary QC), are briefly described here for the Atlantic sector of the Southern Ocean. Data from an existing, quality controlled database (GLODAP) were used as a reference for our computations – however, the reference data were included into the analysis without applying the recommended GLODAP adjustments so the corrections could be independently verified. The outcome of this effort is an internally consistent, high-quality carbon data set for all cruises, including the reference cruises. The suggested corrections by the inversion analysis were allowed to vary within a fixed envelope, thus accounting for natural variability. The percentage of cruises adjusted ranged from 31% (for nitrate) to 54% (for phosphate) depending on the variable
Transkingdom Networks: A Systems Biology Approach to Identify Causal Members of Host-Microbiota Interactions
Improvements in sequencing technologies and reduced experimental costs have
resulted in a vast number of studies generating high-throughput data. Although
the number of methods to analyze these "omics" data has also increased,
computational complexity and lack of documentation hinder researchers from
analyzing their high-throughput data to its true potential. In this chapter we
detail our data-driven, transkingdom network (TransNet) analysis protocol to
integrate and interrogate multi-omics data. This systems biology approach has
allowed us to successfully identify important causal relationships between
different taxonomic kingdoms (e.g. mammals and microbes) using diverse types of
data
Anaerobic Carbon Monoxide Dehydrogenase Diversity in the Homoacetogenic Hindgut Microbial Communities of Lower Termites and the Wood Roach
Anaerobic carbon monoxide dehydrogenase (CODH) is a key enzyme in the Wood-Ljungdahl (acetyl-CoA) pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β) subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities
The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition
The transcription factor Snail is a master regulator of cellular identity and epithelial-to-mesenchymal transition (EMT) directly repressing a broad repertoire of epithelial genes. How chromatin modifiers instrumental to its activity are recruited to Snail-specific binding sites is unclear. Here we report that the long non-coding RNA (lncRNA) HOTAIR (for HOX Transcript Antisense Intergenic RNA) mediates a physical interaction between Snail and enhancer of zeste homolog 2 (EZH2), an enzymatic subunit of the polycomb-repressive complex 2 and the main writer of chromatin-repressive marks. The Snail-repressive activity, here monitored on genes with a pivotal function in epithelial and hepatic morphogenesis, differentiation and cell-type identity, depends on the formation of a tripartite Snail/HOTAIR/EZH2 complex. These results demonstrate an lncRNA-mediated mechanism by which a transcriptional factor conveys a general chromatin modifier to specific genes, thereby allowing the execution of hepatocyte transdifferentiation; moreover, they highlight HOTAIR as a crucial player in the Snail-mediated EMT.Oncogene advance online publication, 25 July 2016; doi:10.1038/onc.2016.260
Testing the theory of immune selection in cancers that break the rules of transplantation
Modification of cancer cells likely to reduce their immunogenicity, including loss or down-regulation of MHC molecules, is now well documented and has become the main support for the concept of immune surveillance. The evidence that these modifications, in fact, result from selection by the immune system is less clear, since the possibility that they may result from reorganized metabolism associated with proliferation or from cell de-differentiation remains. Here, we (a) survey old and new transplantation experiments that test the possibility of selection and (b) survey how transmissible tumours of dogs and Tasmanian devils provide naturally evolved tests of immune surveillance
IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection
Funding: This work was funded by a Career Development Fellowship (1028634) and a project grant (GRNT1028641) awarded to AHa by the Australian National Health & Medical Research Council (NHMRC). IS was supported by The University of Queensland Centennial and IPRS Scholarships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Dietary Supplementation with Soluble Plantain Non-Starch Polysaccharides Inhibits Intestinal Invasion of Salmonella Typhimurium in the Chicken
Soluble fibres (non-starch polysaccharides, NSP) from edible plants but particularly plantain banana (Musa spp.), have been shown in vitro and ex vivo to prevent various enteric pathogens from adhering to, or translocating across, the human intestinal epithelium, a property that we have termed contrabiotic. Here we report that dietary plantain fibre prevents invasion of the chicken intestinal mucosa by Salmonella. In vivo experiments were performed with chicks fed from hatch on a pellet diet containing soluble plantain NSP (0 to 200 mg/d) and orally infected with S.Typhimurium 4/74 at 8 d of age. Birds were sacrificed 3, 6 and 10 d post-infection. Bacteria were enumerated from liver, spleen and caecal contents. In vitro studies were performed using chicken caecal crypts and porcine intestinal epithelial cells infected with Salmonella enterica serovars following pre-treatment separately with soluble plantain NSP and acidic or neutral polysaccharide fractions of plantain NSP, each compared with saline vehicle. Bacterial adherence and invasion were assessed by gentamicin protection assay. In vivo dietary supplementation with plantain NSP 50 mg/d reduced invasion by S.Typhimurium, as reflected by viable bacterial counts from splenic tissue, by 98.9% (95% CI, 98.1–99.7; P<0.0001). In vitro studies confirmed that plantain NSP (5–10 mg/ml) inhibited adhesion of S.Typhimurium 4/74 to a porcine epithelial cell-line (73% mean inhibition (95% CI, 64–81); P<0.001) and to primary chick caecal crypts (82% mean inhibition (95% CI, 75–90); P<0.001). Adherence inhibition was shown to be mediated via an effect on the epithelial cells and Ussing chamber experiments with ex-vivo human ileal mucosa showed that this effect was associated with increased short circuit current but no change in electrical resistance. The inhibitory activity of plantain NSP lay mainly within the acidic/pectic (homogalacturonan-rich) component. Supplementation of chick feed with plantain NSP was well tolerated and shows promise as a simple approach for reducing invasive salmonellosis
- …
