91 research outputs found

    Cellulo: Versatile Handheld Robots for Education

    Get PDF
    In this article, we present Cellulo, a novel robotic platform that investigates the intersection of three ideas for robotics in education: designing the robots to be versatile and generic tools; blending robots into the classroom by designing them to be pervasive objects and by creating tight interactions with (already pervasive) paper; and finally considering the practical constraints of real classrooms at every stage of the design. Our platform results from these considerations and builds on a unique combination of technologies: groups of handheld haptic-enabled robots, tablets and activity sheets printed on regular paper. The robots feature holonomic motion, haptic feedback capability and high accuracy localization through a microdot pattern overlaid on top of the activity sheets, while remaining affordable (robots cost about EUR 125 at the prototype stage) and classroom-friendly. We present the platform and report on our first interaction studies, involving about 230 children

    Mycoplasma pneumoniae detections before and during the COVID-19 pandemic: results of a global survey, 2017 to 2021

    Full text link
    Background Mycoplasma pneumoniae respiratory infections are transmitted by aerosol and droplets in close contact. Aim We investigated global M. pneumoniae incidence after implementation of non-pharmaceutical interventions (NPIs) against COVID-19 in March 2020. Methods We surveyed M. pneumoniae detections from laboratories and surveillance systems (national or regional) across the world from 1 April 2020 to 31 March 2021 and compared them with cases from corresponding months between 2017 and 2020. Macrolide-resistant M. pneumoniae (MRMp) data were collected from 1 April 2017 to 31 March 2021. Results Thirty-seven sites from 21 countries in Europe, Asia, America and Oceania submitted valid datasets (631,104 tests). Among the 30,617 M. pneumoniae detections, 62.39% were based on direct test methods (predominantly PCR), 34.24% on a combination of PCR and serology (no distinction between methods) and 3.37% on serology alone (only IgM considered). In all countries, M. pneumoniae incidence by direct test methods declined significantly after implementation of NPIs with a mean of 1.69% (SD ± 3.30) compared with 8.61% (SD ± 10.62) in previous years (p < 0.01). Detection rates decreased with direct but not with indirect test methods (serology) (–93.51% vs + 18.08%; p < 0.01). Direct detections remained low worldwide throughout April 2020 to March 2021 despite widely differing lockdown or school closure periods. Seven sites (Europe, Asia and America) reported MRMp detections in one of 22 investigated cases in April 2020 to March 2021 and 176 of 762 (23.10%) in previous years (p = 0.04). Conclusions This comprehensive collection of M. pneumoniae detections worldwide shows correlation between COVID-19 NPIs and significantly reduced detection numbers

    Arginine metabolism in Trichomonas vaginalis infected with Mycoplasma hominis

    Get PDF
    Both Mycoplasma hominis and Trichomonas vaginalis utilize arginine as an energy source via the arginine dihydrolase (ADH) pathway. It has been previously demonstrated that M. hominis forms a stable intracellular relationship with T. vaginalis; hence, in this study we examined the interaction of two localized ADH pathways by comparing T. vaginalis strain SS22 with the laboratory-generated T. vaginalis strain SS22-MOZ2 infected with M. hominis MOZ2. The presence of M. hominis resulted in an approximately 16-fold increase in intracellular ornithine and a threefold increase in putrescine, compared with control T. vaginalis cultures. No change in the activity of enzymes of the ADH pathway could be demonstrated in SS22-MOZ2 compared with the parent SS22, and the increased production of ornithine could be attributed to the presence of M. hominis. Using metabolic flow analysis it was determined that the elasticity of enzymes of the ADH pathway in SS22-MOZ2 was unchanged compared with the parent SS22; however, the elasticity of ornithine decarboxylase (ODC) in SS22 was small, and it was doubled in SS22-MOZ2 cells. The potential benefit of this relationship to both T. vaginalis and M. hominis is discussed

    Life on Arginine for Mycoplasma hominis: Clues from Its Minimal Genome and Comparison with Other Human Urogenital Mycoplasmas

    Get PDF
    Mycoplasma hominis is an opportunistic human mycoplasma. Two other pathogenic human species, M. genitalium and Ureaplasma parvum, reside within the same natural niche as M. hominis: the urogenital tract. These three species have overlapping, but distinct, pathogenic roles. They have minimal genomes and, thus, reduced metabolic capabilities characterized by distinct energy-generating pathways. Analysis of the M. hominis PG21 genome sequence revealed that it is the second smallest genome among self-replicating free living organisms (665,445 bp, 537 coding sequences (CDSs)). Five clusters of genes were predicted to have undergone horizontal gene transfer (HGT) between M. hominis and the phylogenetically distant U. parvum species. We reconstructed M. hominis metabolic pathways from the predicted genes, with particular emphasis on energy-generating pathways. The Embden–Meyerhoff–Parnas pathway was incomplete, with a single enzyme absent. We identified the three proteins constituting the arginine dihydrolase pathway. This pathway was found essential to promote growth in vivo. The predicted presence of dimethylarginine dimethylaminohydrolase suggested that arginine catabolism is more complex than initially described. This enzyme may have been acquired by HGT from non-mollicute bacteria. Comparison of the three minimal mollicute genomes showed that 247 CDSs were common to all three genomes, whereas 220 CDSs were specific to M. hominis, 172 CDSs were specific to M. genitalium, and 280 CDSs were specific to U. parvum. Within these species-specific genes, two major sets of genes could be identified: one including genes involved in various energy-generating pathways, depending on the energy source used (glucose, urea, or arginine) and another involved in cytadherence and virulence. Therefore, a minimal mycoplasma cell, not including cytadherence and virulence-related genes, could be envisaged containing a core genome (247 genes), plus a set of genes required for providing energy. For M. hominis, this set would include 247+9 genes, resulting in a theoretical minimal genome of 256 genes

    Phenotypic and genotypic antimicrobial susceptibility patterns of the emerging human respiratory pathogen Mycoplasma amphoriforme isolated from the UK and Denmark

    Get PDF
    Methods Seven isolates of M. amphoriforme were examined for antimicrobial susceptibility to seven antibiotics using the microbroth dilution assay in line with the CLSI guidelines for mycoplasmas. Each isolate was additionally subjected to WGS to identify resistance-associated mutations. Based on the consensus sequences from the genomic data, PCR primers were designed, and tested, for the amplification of the QRDR within the parC gene. Results Of the seven isolates investigated, four (57%) were resistant to moxifloxacin (0.5–1 mg/L) and levofloxacin (1–2 mg/L), compared with those that were susceptible (0.03–0.06 and 0.006 mg/L, respectively). Isolate H29 was resistant to five of the seven antibiotics tested: moxifloxacin, 0.5 mg/L; levofloxacin, 2 mg/L; azithromycin, 64 mg/L; erythromycin, 128 mg/L; and clindamycin, 64 mg/L. All isolates were susceptible to tetracycline (0.06 mg/L) and lefamulin (0.001–0.004 mg/L). Mutations from genomic data confirmed the presence of an S89F mutation within the ParC protein among all fluoroquinolone-resistant isolates and an A2059G mutation in the 23S rRNA gene in the macrolide- and lincosamide-resistant isolate H29. Conclusions To the best of our knowledge, this is the first time where phenotypic and genotypic resistance data have been paired for M. amphoriforme confirming a correlation between the two. These data suggest the need for focused testing and resistance determination of isolates from high-risk patients given the backdrop of a high prevalence of antimicrobial resistance

    Specific Evolution of F1-Like ATPases in Mycoplasmas

    Get PDF
    F1F0 ATPases have been identified in most bacteria, including mycoplasmas which have very small genomes associated with a host-dependent lifestyle. In addition to the typical operon of eight genes encoding genuine F1F0 ATPase (Type 1), we identified related clusters of seven genes in many mycoplasma species. Four of the encoded proteins have predicted structures similar to the α, β, γ and ε subunits of F1 ATPases and could form an F1-like ATPase. The other three proteins display no similarity to any other known proteins. Two of these proteins are probably located in the membrane, as they have three and twelve predicted transmembrane helices. Phylogenomic studies identified two types of F1-like ATPase clusters, Type 2 and Type 3, characterized by a rapid evolution of sequences with the conservation of structural features. Clusters encoding Type 2 and Type 3 ATPases were assumed to originate from the Hominis group of mycoplasmas. We suggest that Type 3 ATPase clusters may spread to other phylogenetic groups by horizontal gene transfer between mycoplasmas in the same host, based on phylogeny and genomic context. Functional analyses in the ruminant pathogen Mycoplasma mycoides subsp. mycoides showed that the Type 3 cluster genes were organized into an operon. Proteomic analyses demonstrated that the seven encoded proteins were produced during growth in axenic media. Mutagenesis and complementation studies demonstrated an association of the Type 3 cluster with a major ATPase activity of membrane fractions. Thus, despite their tendency toward genome reduction, mycoplasmas have evolved and exchanged specific F1-like ATPases with no known equivalent in other bacteria. We propose a model, in which the F1-like structure is associated with a hypothetical X0 sector located in the membrane of mycoplasma cells

    Complexity of the Mycoplasma fermentans M64 Genome and Metabolic Essentiality and Diversity among Mycoplasmas

    Get PDF
    Recently, the genomes of two Mycoplasma fermentans strains, namely M64 and JER, have been completely sequenced. Gross comparison indicated that the genome of M64 is significantly bigger than the other strain and the difference is mainly contributed by the repetitive sequences including seven families of simple and complex transposable elements ranging from 973 to 23,778 bps. Analysis of these repeats resulted in the identification of a new distinct family of Integrative Conjugal Elements of M. fermentans, designated as ICEF-III. Using the concept of “reaction connectivity”, the metabolic capabilities in M. fermentans manifested by the complete and partial connected biomodules were revealed. A comparison of the reported M. pulmonis, M. arthritidis, M. genitalium, B. subtilis, and E. coli essential genes and the genes predicted from the M64 genome indicated that more than 73% of the Mycoplasmas essential genes are preserved in M. fermentans. Further examination of the highly and partly connected reactions by a novel combinatorial phylogenetic tree, metabolic network, and essential gene analysis indicated that some of the pathways (e.g. purine and pyrimidine metabolisms) with partial connected reactions may be important for the conversions of intermediate metabolites. Taken together, in light of systems and network analyses, the diversity among the Mycoplasma species was manifested on the variations of their limited metabolic abilities during evolution

    Mycoplasma pneumoniae infections, 11 countries in Europe and Israel, 2011 to 2016

    Get PDF
    Background: Mycoplasma pneumoniae is a leading cause of community-acquired pneumonia, with large epidemics previously described to occur every 4 to 7 years. Aim: To better understand the diagnostic methods used to detect M. pneumoniae; to better understand M. pneumoniae testing and surveillance in use; to identify epidemics; to determine detection number per age group, age demographics for positive detections, concurrence of epidemics and annual peaks across geographical areas; and to determine the effect of geographical location on the timing of epidemics. Methods: A questionnaire was sent in May 2016 to Mycoplasma experts with national or regional responsibility within the ESCMID Study Group for Mycoplasma and Chlamydia Infections in 17 countries across Europe and Israel, retrospectively requesting details on M. pneumoniae-positive samples from January 2011 to April 2016. The Moving Epidemic Method was used to determine epidemic periods and effect of country latitude across the countries for the five periods under investigation. Results: Representatives from 12 countries provided data on M. pneumoniae infections, accounting for 95,666 positive samples. Two laboratories initiated routine macrolide resistance testing since 2013. Between 2011 and 2016, three epidemics were identified: 2011/12, 2014/15 and 2015/16. The distribution of patient ages for M. pneumoniae-positive samples showed three patterns. During epidemic years, an association between country latitude and calendar week when epidemic periods began was noted. Conclusions: An association between epidemics and latitude was observed. Differences were noted in the age distribution of positive cases and detection methods used and practice. A lack of macrolide resistance monitoring was noted

    Prevalence and Macrolide Resistance of Mycoplasma genitalium in South African Women

    No full text
    International audienceRemnant specimens from 601 women obtained in a cross-sectional study from rural South Africa were tested for Mycoplasma genitalium. Overall, 10.8% of women were infected with M. genitalium either in the vagina or in the rectum. Macrolide resistance, although of low prevalence, in M. genitalium is described for the first time in Sub-Saharan Africa
    corecore