7 research outputs found

    A cross-bispectrum estimator for CMB-HI intensity mapping correlations

    Full text link
    Intensity mapping of 21cm emission from neutral hydrogen (HI) promises to be a powerful probe of large-scale structure in the post-reionisation epoch. However, HI intensity mapping (IM) experiments will suffer the loss of long-wavelength line-of-sight HI modes in the galactic foreground subtraction process. The loss of these modes is particularly problematic for detecting HI IM cross-correlations with projected large-scale structure tracers, such as CMB secondary anisotropies. Here, we propose a cross-bispectrum estimator to recover the cross-correlation of the HI IM field, ÎŽT21,\delta T_{21}, with the CMB lensing field, Îș,\kappa, constructed by correlating the position-dependent HI power spectrum with the mean overdensity traced by CMB lensing. We study the cross-bispectrum estimator, BÎșˉήT21ÎŽT21,B^{\bar \kappa \delta T_{21} \delta T_{21}}, in the squeezed limit and forecast its detectability based on HI IM measurements from HIRAX and CMB lensing measurements from AdvACT. The cross-bispectrum improves constraints on cosmological parameters; in particular, the constraint on the dark energy equation-of-state parameter, w0,w_0, improves on the HI IM auto-power spectra constraint by 44\% (to 0.014), while the constraint on waw_a improves by 33\% (to 0.08), assuming Planck priors in each case. These results are robust to HI IM foreground removal because they largely derive from small-scale HI modes. The HI-HI-Îș\kappa cross-bispectrum thus provides a novel way to recover HI correlations with CMB lensing and constrain cosmological parameters at a level that is competitive with next-generation galaxy redshift surveys. As a striking example of this, we find that the combined constraint on the sum of the neutrino masses, while varying all redshift and standard cosmological parameters within a w0waΩKw_0w_a\Omega_KCDM model, is 5.5 meV.Comment: 11 pages, 4 figure

    The anisotropies of the cosmic infrared backgrounda new tool to probe the evolution of structure : a new tool to probe the evolution of structure

    No full text
    Le fond diffus infrarouge est la contribution de toutes les galaxies infrarouges intĂ©grĂ©e sur toute l’histoire de l’Univers. Il Ă©met entre 8 et 1000 ”m et Ă  un pic vers 200 ”m. On rĂ©sout une large fraction de ce fond dans l’infrarouge proche mais seule une petite fraction l’est dans l’infrarouge moyen et lointain Ă  cause de la confusion. Les sources les plus faibles sont perdues dans le bruit de confusion. Cela forme des fluctuations de brillance, les anisotropies du fond diffus infrarouge. L’étude de ces ïŹ‚uctuations permet l’étude des galaxies sous le seuil de dĂ©tection, donc des galaxies les plus faibles. GrĂące au spectre de puissance on peut mesurer la puissance conte- nue dans ces ïŹ‚uctuations en fonction de l’échelle spatiale. Cette mesure contient, entre autre, le regroupement des galaxies infrarouges. Dans un premier temps, j’ai isolĂ© du spectre de puissance d’une carte infrarouge, le spectre de puissance dĂ» uniquement aux galaxies infrarouges. En effet, aux grandes Ă©chelles spatiales, il est contaminĂ© par l’émission des cirrus Galactiques. Ces cirrus sont des nuages d’hydrogĂšne neutre, tracĂ©s par la raie Ă  21 cm. J’ai donc utilisĂ© des donnĂ©es Ă  21 cm pour estimer l’émission infrarouge de ces cirrus pour ensuite la soustraire aux cartes infrarouge Ă  100 et 160 ”m. Cela m’a aussi permis de faire une mesure prĂ©cise du niveau absolu du fond diffus infrarouge Ă  ces longueurs d’onde. AïŹn d’analyser ces spectres de puissances, j’ai mis en place un modĂšle de regroupement des galaxies infrarouges reliant un modĂšle d’évolution des galaxies infrarouge reproduisant les donnĂ©es existantes dont celles d’Herschel et un modĂšle de halo. C’est un modĂšle complĂ©tement paramĂ©trĂ© ce qui permet l’étude des dĂ©gĂ©nĂ©rescences de ces paramĂštres. J’en ai aussi tirĂ© des mesures physiques et leur Ă©volution avec la longueur d’onde. De plus, j’ai ajustĂ© les donnĂ©es existantes de 100 Ă  1380 ”m. GrĂące au modĂšle on peut dĂ©terminer les contributions en redshift Ă  chaque longueur d’onde. Les courtes longueurs d’onde tracent les bas redshifts alors que les grandes longueurs d’onde tracent les hauts redshifts. Cependant la contribution des bas redshifts est loin d’ĂȘtre nĂ©gligeable Ă  ces longueurs d’onde. AïŹn de dĂ©terminer l’évolution du regroupement avec le redshift des cartes des anisotropies du fond diffus infrarouge sont nĂ©cessaires. Je vais expliciter une mĂ©thode de sĂ©paration de composantes dĂ©diĂ©e Ă  cela.The Cosmic Infrared Background is the contribution of all infrared galaxies integrated on the history of the Universe. It emits between 8 and 1000 um with a peak around 200 um. A large fraction of this background is resolved into sources in the near infrared but only a tiny fraction is in the mid and far infrared because of confusion. The least luminous sources are lost in the confusion noise which forms brightness fluctuations, the anisotropies of the cosmic infrared background. The study of these fluctuations enables the study of the galaxies below the detection threshold, thus the less luminous galaxies. Thanks to the power spectrum we can measure the power contained in these fluctuations as a function of the scale. This measure contains, among others, the clustering of the infrared galaxies. First, I have isolated from the power spectrum of an infrared map, the power spectrum only due to infrared galaxies. Indeed, at large spatial scales, it is contaminated by the emission of Galactic cirrus. These cirrus are clouds of neutral hydrogen traced by the 21 cm line. Therefore, I made use of data at 21 cm to estimate the infrared emission of these cirrus that I have then subtracted from infrared maps at 100 and 160 um.This has also enabled me to compute the absolute level of the cosmic infrared background at these wavelengths. In order to analyse these power spectra, I developped a model of clustering of infrared galaxies. To do so I linked a model of evolution of galaxies that reproduces very well existing data including those of Herschel and a halo model. This is a fully parametric model that enables the study of the degeneracies of these parameters. I was also able to study the evolution with the wavelength of several physical measures. Furthermore, I fitted data from 100 um to 1380 um. Thanks to that model, I can determine the redshift distribution at each wavelength. Short wavelength probe small redshifts whereas long wavelength probe high redshifts. However the contribution of small redshift is far from being negligeable at long wavelength. As a long term purpose of determining the evolution of the clustering if the infrared galaxies, maps of the anisotropies of the cosmic infrared background are needed. I will then detail a component separation method dedicated to this problem

    Les anisotropies du fond diffus infrarouge : un nouvel outil pour sonder l'Ă©volution des structures

    No full text
    The Cosmic Infrared Background is the contribution of all infrared galaxies integrated on the history of the Universe. It emits between 8 and 1000 um with a peak around 200 um. A large fraction of this background is resolved into sources in the near infrared but only a tiny fraction is in the mid and far infrared because of confusion. The least luminous sources are lost in the confusion noise which forms brightness fluctuations, the anisotropies of the cosmic infrared background. The study of these fluctuations enables the study of the galaxies below the detection threshold, thus the less luminous galaxies. Thanks to the power spectrum we can measure the power contained in these fluctuations as a function of the scale. This measure contains, among others, the clustering of the infrared galaxies. First, I have isolated from the power spectrum of an infrared map, the power spectrum only due to infrared galaxies. Indeed, at large spatial scales, it is contaminated by the emission of Galactic cirrus. These cirrus are clouds of neutral hydrogen traced by the 21 cm line. Therefore, I made use of data at 21 cm to estimate the infrared emission of these cirrus that I have then subtracted from infrared maps at 100 and 160 um.This has also enabled me to compute the absolute level of the cosmic infrared background at these wavelengths. In order to analyse these power spectra, I developped a model of clustering of infrared galaxies. To do so I linked a model of evolution of galaxies that reproduces very well existing data including those of Herschel and a halo model. This is a fully parametric model that enables the study of the degeneracies of these parameters. I was also able to study the evolution with the wavelength of several physical measures. Furthermore, I fitted data from 100 um to 1380 um. Thanks to that model, I can determine the redshift distribution at each wavelength. Short wavelength probe small redshifts whereas long wavelength probe high redshifts. However the contribution of small redshift is far from being negligeable at long wavelength. As a long term purpose of determining the evolution of the clustering if the infrared galaxies, maps of the anisotropies of the cosmic infrared background are needed. I will then detail a component separation method dedicated to this problem.Le fond diffus infrarouge est la contribution de toutes les galaxies infrarouges intĂ©grĂ©e sur toute l’histoire de l’Univers. Il Ă©met entre 8 et 1000 ”m et Ă  un pic vers 200 ”m. On rĂ©sout une large fraction de ce fond dans l’infrarouge proche mais seule une petite fraction l’est dans l’infrarouge moyen et lointain Ă  cause de la confusion. Les sources les plus faibles sont perdues dans le bruit de confusion. Cela forme des fluctuations de brillance, les anisotropies du fond diffus infrarouge. L’étude de ces ïŹ‚uctuations permet l’étude des galaxies sous le seuil de dĂ©tection, donc des galaxies les plus faibles. GrĂące au spectre de puissance on peut mesurer la puissance conte- nue dans ces ïŹ‚uctuations en fonction de l’échelle spatiale. Cette mesure contient, entre autre, le regroupement des galaxies infrarouges. Dans un premier temps, j’ai isolĂ© du spectre de puissance d’une carte infrarouge, le spectre de puissance dĂ» uniquement aux galaxies infrarouges. En effet, aux grandes Ă©chelles spatiales, il est contaminĂ© par l’émission des cirrus Galactiques. Ces cirrus sont des nuages d’hydrogĂšne neutre, tracĂ©s par la raie Ă  21 cm. J’ai donc utilisĂ© des donnĂ©es Ă  21 cm pour estimer l’émission infrarouge de ces cirrus pour ensuite la soustraire aux cartes infrarouge Ă  100 et 160 ”m. Cela m’a aussi permis de faire une mesure prĂ©cise du niveau absolu du fond diffus infrarouge Ă  ces longueurs d’onde. AïŹn d’analyser ces spectres de puissances, j’ai mis en place un modĂšle de regroupement des galaxies infrarouges reliant un modĂšle d’évolution des galaxies infrarouge reproduisant les donnĂ©es existantes dont celles d’Herschel et un modĂšle de halo. C’est un modĂšle complĂ©tement paramĂ©trĂ© ce qui permet l’étude des dĂ©gĂ©nĂ©rescences de ces paramĂštres. J’en ai aussi tirĂ© des mesures physiques et leur Ă©volution avec la longueur d’onde. De plus, j’ai ajustĂ© les donnĂ©es existantes de 100 Ă  1380 ”m. GrĂące au modĂšle on peut dĂ©terminer les contributions en redshift Ă  chaque longueur d’onde. Les courtes longueurs d’onde tracent les bas redshifts alors que les grandes longueurs d’onde tracent les hauts redshifts. Cependant la contribution des bas redshifts est loin d’ĂȘtre nĂ©gligeable Ă  ces longueurs d’onde. AïŹn de dĂ©terminer l’évolution du regroupement avec le redshift des cartes des anisotropies du fond diffus infrarouge sont nĂ©cessaires. Je vais expliciter une mĂ©thode de sĂ©paration de composantes dĂ©diĂ©e Ă  cela

    Les anisotropies du fond diffus infrarouge (un nouvel outil pour sonder l'Ă©volution des structures)

    No full text
    Le fond diffus infrarouge est la contribution de toutes les galaxies infrarouges intĂ©grĂ©e sur toute l histoire de l Univers. Il Ă©met entre 8 et 1000 m et Ă  un pic vers 200 m. On rĂ©sout une large fraction de ce fond dans l infrarouge proche mais seule une petite fraction l est dans l infrarouge moyen et lointain Ă  cause de la confusion. Les sources les plus faibles sont perdues dans le bruit de confusion. Cela forme des fluctuations de brillance, les anisotropies du fond diffus infrarouge. L Ă©tude de ces uctuations permet l Ă©tude des galaxies sous le seuil de dĂ©tection, donc des galaxies les plus faibles. GrĂące au spectre de puissance on peut mesurer la puissance conte- nue dans ces uctuations en fonction de l Ă©chelle spatiale. Cette mesure contient, entre autre, le regroupement des galaxies infrarouges. Dans un premier temps, j ai isolĂ© du spectre de puissance d une carte infrarouge, le spectre de puissance dĂ» uniquement aux galaxies infrarouges. En effet, aux grandes Ă©chelles spatiales, il est contaminĂ© par l Ă©mission des cirrus Galactiques. Ces cirrus sont des nuages d hydrogĂšne neutre, tracĂ©s par la raie Ă  21 cm. J ai donc utilisĂ© des donnĂ©es Ă  21 cm pour estimer l Ă©mission infrarouge de ces cirrus pour ensuite la soustraire aux cartes infrarouge Ă  100 et 160 m. Cela m a aussi permis de faire une mesure prĂ©cise du niveau absolu du fond diffus infrarouge Ă  ces longueurs d onde. A n d analyser ces spectres de puissances, j ai mis en place un modĂšle de regroupement des galaxies infrarouges reliant un modĂšle d Ă©volution des galaxies infrarouge reproduisant les donnĂ©es existantes dont celles d Herschel et un modĂšle de halo. C est un modĂšle complĂ©tement paramĂ©trĂ© ce qui permet l Ă©tude des dĂ©gĂ©nĂ©rescences de ces paramĂštres. J en ai aussi tirĂ© des mesures physiques et leur Ă©volution avec la longueur d onde. De plus, j ai ajustĂ© les donnĂ©es existantes de 100 Ă  1380 m. GrĂące au modĂšle on peut dĂ©terminer les contributions en redshift Ă  chaque longueur d onde. Les courtes longueurs d onde tracent les bas redshifts alors que les grandes longueurs d onde tracent les hauts redshifts. Cependant la contribution des bas redshifts est loin d ĂȘtre nĂ©gligeable Ă  ces longueurs d onde. A n de dĂ©terminer l Ă©volution du regroupement avec le redshift des cartes des anisotropies du fond diffus infrarouge sont nĂ©cessaires. Je vais expliciter une mĂ©thode de sĂ©paration de composantes dĂ©diĂ©e Ă  cela.The Cosmic Infrared Background is the contribution of all infrared galaxies integrated on the history of the Universe. It emits between 8 and 1000 um with a peak around 200 um. A large fraction of this background is resolved into sources in the near infrared but only a tiny fraction is in the mid and far infrared because of confusion. The least luminous sources are lost in the confusion noise which forms brightness fluctuations, the anisotropies of the cosmic infrared background. The study of these fluctuations enables the study of the galaxies below the detection threshold, thus the less luminous galaxies. Thanks to the power spectrum we can measure the power contained in these fluctuations as a function of the scale. This measure contains, among others, the clustering of the infrared galaxies. First, I have isolated from the power spectrum of an infrared map, the power spectrum only due to infrared galaxies. Indeed, at large spatial scales, it is contaminated by the emission of Galactic cirrus. These cirrus are clouds of neutral hydrogen traced by the 21 cm line. Therefore, I made use of data at 21 cm to estimate the infrared emission of these cirrus that I have then subtracted from infrared maps at 100 and 160 um.This has also enabled me to compute the absolute level of the cosmic infrared background at these wavelengths. In order to analyse these power spectra, I developped a model of clustering of infrared galaxies. To do so I linked a model of evolution of galaxies that reproduces very well existing data including those of Herschel and a halo model. This is a fully parametric model that enables the study of the degeneracies of these parameters. I was also able to study the evolution with the wavelength of several physical measures. Furthermore, I fitted data from 100 um to 1380 um. Thanks to that model, I can determine the redshift distribution at each wavelength. Short wavelength probe small redshifts whereas long wavelength probe high redshifts. However the contribution of small redshift is far from being negligeable at long wavelength. As a long term purpose of determining the evolution of the clustering if the infrared galaxies, maps of the anisotropies of the cosmic infrared background are needed. I will then detail a component separation method dedicated to this problem.PARIS11-SCD-Bib. Ă©lectronique (914719901) / SudocSudocFranceF

    Overall Structural Model of NS5A Protein from Hepatitis C Virus and Modulation by Mutations Confering Resistance of Virus Replication to Cyclosporin A

    No full text
    Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a RNA-binding phosphoprotein composed of a N-terminal membrane anchor (AH), a structured domain 1 (D1), and two intrinsically disordered domains (D2 and D3). The knowledge of the functional architecture of this multifunctional protein remains limited. We report here that NS5A-D1D2D3 produced in a wheat germ cell-free system is obtained under a highly phosphorylated state. Its NMR analysis revealed that these phosphorylations do not change the disordered nature of D2 and D3 domains but increase the number of conformers due to partial phosphorylations. By combining NMR and small angle X-ray scattering, we performed a comparative structural characterization of unphosphorylated recombinant D2 domains of JFH1 (genotype 2a) and the Con1 (genotype 1b) strains produced in <i>Escherichia coli</i>. These analyses highlighted a higher intrinsic folding of the latter, revealing the variability of intrinsic conformations in HCV genotypes. We also investigated the effect of D2 mutations conferring resistance of HCV replication to cyclophilin A (CypA) inhibitors on the structure of the recombinant D2 Con1 mutants and their binding to CypA. Although resistance mutations D320E and R318W could induce some local and/or global folding perturbation, which could thus affect the kinetics of conformer interconversions, they do not significantly affect the kinetics of CypA/D2 interaction measured by surface plasmon resonance (SPR). The combination of all our data led us to build a model of the overall structure of NS5A, which provides a useful template for further investigations of the structural and functional features of this enigmatic protein

    A framework for understanding climate change impacts on coral reef social–ecological systems

    No full text
    International audienceCorals and coral-associated species are highly vulnerable to the emerging effects of global climate change. The widespread degradation of coral reefs, which will be accelerated by climate change, jeopardizes the goods and services that tropical nations derive from reef ecosystems. However, climate change impacts to reef social–ecological systems can also be bi-directional. For example, some climate impacts, such as storms and sea level rise, can directly impact societies, with repercussions for how they interact with the environment. This study identifies the multiple impact pathways within coral reef social–ecological systems arising from four key climatic drivers: increased sea surface temperature, severe tropical storms, sea level rise and ocean acidification. We develop a novel framework for investigating climate change impacts in social–ecological systems, which helps to highlight the diverse impacts that must be considered in order to develop a more complete understanding of the impacts of climate change, as well as developing appropriate management actions to mitigate climate change impacts on coral reef and people

    A framework for understanding climate change impacts on coral reef social–ecological systems

    No full text
    corecore