237 research outputs found

    The Fading of Symmetry Non-restoration at Finite Temperature

    Get PDF
    The fate of symmetries at high temperature determines the dynamics of the very early universe. It is conceivable that temperature effects favor symmetry breaking instead of restoration. Concerning global symmetries, the non-linear sigma model is analyzed in detail. For spontaneously broken gauge symmetries, we propose the gauge boson magnetic mass as a ``flag'' for symmetry (non)-restoration. We consider several cases: the standard model with one and two Higgs doublets in the perturbative regime, and the case of a strongly interacting Higgs sector. The latter is done in a model independent way with the tools provided by chiral Lagrangians. Our results clearly point towards restoration, a pattern consistent with recent lattice computations for global symmetries. In addition, we explicitly verify BRSTBRST invariance for gauge theories at finite temperature.Comment: 28 pages, Latex2e, 28 figures, two typos corrected, conclusions remain unchange

    The dynamical origin of the refinement of the Gribov-Zwanziger theory

    Full text link
    In recent years, the Gribov-Zwanziger action was refined by taking into account certain dimension 2 condensates. In this fashion, one succeeded in bringing the gluon and the ghost propagator obtained from the GZ model in qualitative and quantitative agreement with the lattice data. In this paper, we shall elaborate further on this aspect. First, we shall show that more dimension 2 condensates can be taken into account than considered so far and, in addition, we shall give firm evidence that these condensates are in fact present by discussing the effective potential. It follows thus that the Gribov-Zwanziger action dynamically transforms itself into the refined version, thereby showing that the continuum nonperturbative Landau gauge fixing, as implemented by the Gribov-Zwanziger approach, is consistent with lattice simulations.Comment: 36 pages, 4 figure

    Indirect lattice evidence for the Refined Gribov-Zwanziger formalism and the gluon condensate A2\braket{A^2} in the Landau gauge

    Get PDF
    We consider the gluon propagator D(p2)D(p^2) at various lattice sizes and spacings in the case of pure SU(3) Yang-Mills gauge theories using the Landau gauge fixing. We discuss a class of fits in the infrared region in order to (in)validate the tree level analytical prediction in terms of the (Refined) Gribov-Zwanziger framework. It turns out that an important role is played by the presence of the widely studied dimension two gluon condensate A2\braket{A^2}. Including this effect allows to obtain an acceptable fit up to 1 \'{a} 1.5 GeV, while corroborating the Refined Gribov-Zwanziger prediction for the gluon propagator. We also discuss the infinite volume extrapolation, leading to the estimate D(0)=8.3±0.5GeV2D(0)=8.3\pm0.5\text{GeV}^{-2}. As a byproduct, we can also provide the prediction g2A23GeV2\braket{g^2 A^2}\approx 3\text{GeV}^2 obtained at the renormalization scale μ=10GeV\mu=10\text{GeV}.Comment: 17 pages, 10 figures, updated version, accepted for publication in Phs.Rev.

    Drake Antarctic Agile Meteor Radar (DrAAMER) First Results: Configuration and Comparison of Mean and Tidal Wind and Gravity Wave Momentum Flux Measurements with SAAMER

    Get PDF
    A new-generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1degS) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8degS). Motivations for the radars include the "hotspot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contribute most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from approx.20 to >70 m/s. In contrast, the diurnal tide and various planetary waves achieve maximum winds of approx.10 to 20 m/s. Monthly-mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below approx.85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this "hotspot"

    apeNEXT: A multi-TFlops Computer for Simulations in Lattice Gauge Theory

    Full text link
    We present the APE (Array Processor Experiment) project for the development of dedicated parallel computers for numerical simulations in lattice gauge theories. While APEmille is a production machine in today's physics simulations at various sites in Europe, a new machine, apeNEXT, is currently being developed to provide multi-Tflops computing performance. Like previous APE machines, the new supercomputer is largely custom designed and specifically optimized for simulations of Lattice QCD.Comment: Poster at the XXIII Physics in Collisions Conference (PIC03), Zeuthen, Germany, June 2003, 3 pages, Latex. PSN FRAP15. Replaced for adding forgotten autho

    CCC meets ICU: Redefining the role of critical care of cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently the majority of cancer patients are considered ineligible for intensive care treatment and oncologists are struggling to get their patients admitted to intensive care units. Critical care and oncology are frequently two separate worlds that communicate rarely and thus do not share novel developments in their fields. However, cancer medicine is rapidly improving and cancer is eventually becoming a chronic disease. Oncology is therefore characterized by a growing number of older and medically unfit patients that receive numerous novel drug classes with unexpected side effects.</p> <p>Discussion</p> <p>All of these changes will generate more medically challenging patients in acute distress that need to be considered for intensive care. An intense exchange between intensivists, oncologists, psychologists and palliative care specialists is warranted to communicate the developments in each field in order to improve triage and patient treatment. Here, we argue that "critical care of cancer patients" needs to be recognized as a medical subspecialty and that there is an urgent need to develop it systematically.</p> <p>Conclusion</p> <p>As prognosis of cancer improves, novel therapeutic concepts are being introduced and more and more older cancer patients receive full treatment the number of acutely ill patients is growing significantly. This development a major challenge to current concepts of intensive care and it needs to be redefined who of these patients should be treated, for how long and how intensively.</p

    Dpes massless QCD have vacuum energy?

    Full text link
    It is widely thought that this question has a positive answer, but we argue that the support for this belief from both experiment and theory is weak or nonexistent. We then list some of the ramifications of a negative answer.Comment: 8 pages, no figures, version to appear in NJ

    Formalism for dilepton production via virtual photon bremsstrahlung in hadronic reactions

    Get PDF
    We derive a set of new formulas for various distributions in dilepton production via virtual photon bremsstrahlung from pseudoscalar mesons and unpolarized spin-one-half fermions. These formulas correspond to the leading and sub-leading terms in the Low-Burnett-Kroll expansion for real photon bremsstrahlung. The relation of our leading-term formulas to previous works is also shown. Existing formulas are examined in the light of Lorentz covariance and gauge invariance. Numerical comparison is made in a simple example, where an "exact" formula and real photon data exist. The results reveal large discrepancies among different bremsstrahlung formulas. Of all the leading-term bremsstrahlung formulas, the one derived in this work agrees best with the exact formula. The issues of M_T-scaling and event generators are also addressed.Comment: 37 pages, RevTeX, epsf.sty, 10 embedded figure

    The apeNEXT project

    Get PDF
    Numerical simulations in theoretical high-energy physics (Lattice QCD) require huge computing resources. Several generations of massively parallel computers optimised for these applications have been developed within the APE (array processor experiment) project. Large prototype systems of the latest generation, apeNEXT, are currently being assembled and tested. This contribution explains how the apeNEXT architecture is optimised for Lattice QCD, provides an overview of the hardware and software of apeNEXT, and describes its new features, like the SPMD programming model and the C compiler

    Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks

    Full text link
    We present preliminary results of the non-perturbative computation of the RI-MOM renormalisation constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark flavours at three lattice spacings and at several values of the standard and twisted quark mass parameters. The RI-MOM renormalisation constants are obtained from appropriate O(a) improved estimators extrapolated to the chiral limit.Comment: 7 pages, 8 figures, Talk presented at the XXIX International Symposium on Lattice Field Theory (Lattice 2011), July 10-16, 2011, Squaw Valley, Lake Tahoe, California, US
    corecore