
ARTICLE IN PRESS
0168-9002/$ - se

doi:10.1016/j.ni

$Talk given
�Correspond
E-mail addr
Nuclear Instruments and Methods in Physics Research A 559 (2006) 90–94

www.elsevier.com/locate/nima
The apeNEXT project$

F. Bellettia, F. Bodinb, Ph. Boucaudc, N. Cabibbod, A. Lonardod, S. de Lucad, M. Lukyanove,
J. Michelic, L. Morine, O. Penec, D. Pleiterf, F. Rapuanog, D. Rossettid, S.F. Schifanoa,

H. Simmae,�, R. Tripiccionea, P. Vicinid, The apeNEXT Collaboration
aDipartimento di Fisica, Università di Ferrara and INFN, Sezione di Ferrara, Italy

bIRISA/INRIA, Campus Université de Beaulieu, Rennes, France
cLPT, University of Paris-Sud, Orsay, France

dDipartimento di Fisica, Università di Roma ‘‘La Sapienza’’ and INFN, Sezione di Roma, Italy
eDESY Zeuthen, Germany

fNIC/DESY Zeuthen, Germany
gDipartimento di Fisica, Università di Milano-Bicocca and INFN, Sezione di Milano, Italy

Available online 20 December 2005
Abstract

Numerical simulations in theoretical high-energy physics (Lattice QCD) require huge computing resources. Several generations of

massively parallel computers optimised for these applications have been developed within the APE (array processor experiment) project.

Large prototype systems of the latest generation, apeNEXT, are currently being assembled and tested. This contribution explains how

the apeNEXT architecture is optimised for Lattice QCD, provides an overview of the hardware and software of apeNEXT, and describes

its new features, like the SPMD programming model and the C compiler.

r 2005 Elsevier B.V. All rights reserved.

PACS: 12.38.Gc; 07.05.Bx; 89.20.Ff

Keywords: Computer architecture; Lattice QCD; Massively parallel computing
1. Introduction

apeNEXT is the latest parallel computer developed by
the APE Collaboration. The architecture is optimised for
numerical simulations of Quantum Chromo Dynamics on
the lattice (LQCD). While the previous APE generation,
APEmille, has been the workhorse for many LQCD
simulations in Europe since 2001, the new machine will
contribute to provide the compute power for LQCD during
the next years.

Main design goals for apeNEXT are a good scalability

up to machines with tens of Tflops compute power and an
architecture which is optimised to deliver around 50% of
peak performance for LQCD applications. The project is
e front matter r 2005 Elsevier B.V. All rights reserved.

ma.2005.11.203

by H. Simma at ACAT05.

ing author.

ess: hubert.simma@desy.de (H. Simma).
carried out in the framework of a collaboration between
research institutes in Italy (INFN), Germany (DESY) and
France (Université Paris-Sud).
Implementation challenges for this project include the

integration of all processor and network functionalities in a
single ASIC chip and the support for the standard

programming language C.
2. LQCD requirements

Computations in LQCD are based on the Feynman path
integral method. The fields are restricted to live on a
discretised space-time lattice in order to render the problem
mathematically well-defined and suitable for numerical
computations on a computer.
The gluons correspond to gauge fields represented on the

lattice by SU(3) matrices, Uðx; t;mÞ, associated to each of

www.elsevier.com/locate/nima

ARTICLE IN PRESS
F. Belletti et al. / Nuclear Instruments and Methods in Physics Research A 559 (2006) 90–94 91
the four forward links m between adjacent lattice sites. The
fermionic quark fields correspond to 12-component spin-
colour vectors, cðx; tÞ, associated to each lattice site. On a
lattice of e.g. 323 � 64 lattice sites we need as many as
about 2� 108 complex variables to store the gluon field
and one quark flavour. The integration over such a high
number of dimensions is carried out by a Monte-Carlo
method which generates gauge field configurations accord-
ing to the distribution

PðUÞ � e�SgðUÞ �

Z
D½c�e�c̄MðUÞc

where Sg is the action of the gauge field and MðUÞ is the
Wilson–Dirac operator. The algorithms typically used to
compute the integral D½c� over the fermion field are based
on iterative methods. The computational cost is dominated
by the multiplication MðUÞc of some fermion field with
the Wilson–Dirac operator. This is a sparse matrix, but its
dimension grows with the number of lattice sites and for
each site the computation of MðUÞc requires 1344 floating-
point (FP) operations. The key requirement for the design
of a dedicated computer for LQCD applications is there-
fore the efficient computation of MðUÞc together with
basic linear algebra on the c vectors. Obviously, this needs
a powerful FP unit, preferably in 64-bit precision to avoid
accumulation of rounding errors for global quantities on
large lattices. To efficiently feed the arithmetic unit, the FP
throughput must be balanced with respect to the band-
width for local memory accesses and remote communica-
tions between the processors (for more details see [1,2]).
Further optimisations of the architecture must also include
other hardware parameters like latencies and storage space
at different levels of the memory hierarchy and of the
communication network.

Parallelisation of LQCD codes on a computer can be
achieved in a straightforward way by dividing the lattice
into equal sublattices and distributing the corresponding
variables over a processor grid. In this way, all nodes
perform the same operations for most of the time and a
simple Single Instruction Multiple Data (SIMD) architec-
ture is sufficient.

Due to the huge computing resources needed for realistic
large-scale LQCD simulations, production machines must
be scalable up to systems with thousands of processors.
These large systems must reliably operate over long time
periods, because the execution of just a single LQCD
program typically runs for several days.
Fig. 1. apeNEXT daughter board with 1.6 Gflops (original size is

65� 105mm).
3. apeNEXT enhancements

While improving on performance as much as possible
through the use of more advanced processor architecture
and technology, the design of apeNEXT has tried to
maintain an architecture, as perceived at the user level,
close to its previous generation, APEmille. However, two
important features have been added in apeNEXT [3].
First, apeNEXT is a SPMD (as opposed to SIMD)
system. Each processing node is a fully independent
processor with a full-fledged flow-control unit and, of
course, a number-crunching unit. Each node executes its
own copy of the program at its own pace. Nodes need to be
synchronised only when a data-exchange operation is
performed. Internode communications are initiated by a
single instruction on the sending node that must be
matched by a corresponding instruction on the destination
node. The latency associated to these ‘‘messages’’ is short,
of the order of 2–3 times the latency of an access to local
memory. Therefore, the actual data transfer rate between
nodes is bandwidth-limited (as opposed to latency-limited)
even for short packets. This is relevant in LQCD
applications, where the natural size of data packets
transferred to remote processors is not larger than about
200 bytes.
A second important architectural enhancement is the

possibility of routing all memory read accesses (to local or
remote nodes) through a receiving queue, which can be
accessed by the processor with almost zero latency. This
mechanism can be used for data pre-fetch in critical kernel
loops and allows communications to be executed concur-
rently with other processor operations.
4. Node architecture

An apeNEXT computing node is based on one processor
chip together with its local memory bank (256MByte of
Double Data Rate Dynamic RAM) which are housed on a
small daughter board, shown in Fig. 1. One processor delivers
up to 1.6 Gflops of processing power in double precision with
a power consumption of approximately 7W, that is about 10
times less than current generation high-end PCs.
The apeNEXT processor is a 64-bit architecture con-

trolled by a very long instruction word (VLIW). All
processor functionalities, including the memory and com-
munication interfaces, are integrated in a single custom chip
designed to run at a clock frequency of 200MHz. Some
further technical details are explained in the following.

ARTICLE IN PRESS

Fig. 2. apeNEXT rack with 512 nodes.

F. Belletti et al. / Nuclear Instruments and Methods in Physics Research A 559 (2006) 90–9492
The arithmetic block performs FP and integer computa-
tions. FP operands are either complex values or pairs of
real values, represented in 64-bit IEEE double-precision
format. At each clock cycle a basic FP operation a� bþ c

can be started to provide a maximal throughput of eight
FP operations per clock cycle. The arithmetic block also
performs integer or bitwise arithmetics on pairs of 64-bit
integers and provides support for mathematical functions,
like square-roots or exponential of FP numbers.

The large register file with 256 registers, each holding a
pair of 64-bit words, is directly connected to the memory
and prefetch queues (without any intermediate cache
levels).

An address-generation unit allows to compute addresses
for memory accesses (and other integer arithmetics)
independently and concurrently with the main arithmetic
block.

The memory controller interfaces the processor to the
external standard DDR-SDRAM which stores both data
and instructions. To reduce memory conflicts between data
access and program fetch, the VLIW instructions are
compressed and pass through an instruction buffer, which
allows to keep a block of instructions (e.g. a loop body) in
the processor. Instruction de-compression is performed on
the fly.

A set of FIFOs implements the queue mechanism, which
automatically ensures that data words are delivered to the
processor in the same order in which they were requested
from local or remote memory (even if accesses have
completed in a different order, because a remote access
takes longer than a local one).

The network interface controls seven full-duplex LVDS
links. Each link transfers 1 byte per clock cycle, i.e. the
gross bandwidth is 200MB/s per link and direction. Due to
protocol overhead the effective network bandwidth is
p180MB=s. The network latency is O(100 ns), at least one
order of magnitude smaller than for today’s commercial
high performance network technologies. Once a commu-
nication request is queued, it is executed under complete
hardware control and independently of the rest of the
processor.

One of the seven communication links is used for data
IO. An additional serial interface, based on the I2C
standard, serves for system initialisation, debugging and
exception handling.

A few interrupt and control signals, e.g. to propagate
exceptions and to perform synchronisation, are handled by
a global tree network with less than 400 ns roundtrip time
on large machines.

5. System architecture

The compactness and the low power consumption of the
processing nodes are key ingredients to build very compact
systems with thousands of nodes. Large apeNEXT systems
may have up to 4000 nodes and a peak performance of 6.4
Tflops.
The 6 links of each node are used for fast communication
between the processors which are arranged as a three-
dimensional torus. The 7th communication link of certain
nodes is connected to the host system, which is build up of
a cluster of Linux PCs. In addition, all nodes are connected
to the host via the slow serial interface and to a tree
network for the global signals. All control and commu-
nication devices can be configured by software to allow
flexible partitioning of the machine into independent sub-
systems.
The entire system, including host PCs, power supply

units, and air-forced cooling, is hosted in a rack which was
custom developed to allow a high-density, robust and
reliable system. Sub-systems of 16 apeNEXT nodes
(4� 2� 2) are assembled onto a mother board. A set of
16 mother boards is housed within one system crate. All
communication links between these nodes run on the crate
backplane. Larger systems are assembled connecting
together several crates using external cables. An apeNEXT

rack, shown in Fig. 2, integrates two fully interconnected
crates, i.e. 512 computing nodes, with a peak performance
of 0.8 Tflops.

6. Software

apeNEXT machines are hosted and controlled by a
cluster of Linux PCs. The cluster contains the slave-PCs

ARTICLE IN PRESS

Table 1

Results for selected benchmarks

Operation Mflops/s %Peak

M½U �c 894 54

Vector norm 592 37

Scalar product 656 41

Linear combinations 464 29

F. Belletti et al. / Nuclear Instruments and Methods in Physics Research A 559 (2006) 90–94 93
directly connected to the apeNEXT core and one (or more)
master-PCs where users log-in to run programs. The
operating system (OS) allows to control and partition the
machine, and supports execution and monitoring of a
single-user program on each partition. The OS is dis-
tributed over the host PCs and cooperates with system
routines running on the apeNEXT nodes to manage the
loading of the user program and the handling of IO
requests.

The IO and control links of the apeNEXT system are
physically connected to Host Interface Boards which are
plugged into the host PCs. Typically, the apeNEXT

machines have one fast IO channel per 64 nodes, but other
configurations, depending on the requirements for parti-
tioning and IO-bandwidth, are possible.

Application programs for apeNEXT are written in the
high-level programming languages TAO or C. Since TAO

was used by all previous APE machines, a large set of
LQCD programs has been developed over the years in
TAO and continued TAO support is required for compat-
ibility.

apeNEXT is the first APE machine which can be
programmed in C. The compiler is based on the freely
available lcc compiler and supports most of the ISO C99

requirements with a few language extensions to exploit
specific hardware features and to control parallelism.

For both languages, access to remote data is memory
mapped, i.e. the access is performed by specifying the
address of the data structure plus a pre-defined constant.
No call to library functions is necessary to perform a
network data transfer.

The assembly code generated by either compiler is
passed to a powerful assembly optimiser which performs
a number of important architecture dependent and
independent optimisations, like merging multiply-adds into
normal operations, removing dead code, removing register
copies through register renaming, merging of address
generation operations, etc.

The optimised assembly is then translated into corre-
sponding instruction patterns in the VLIW micro-code. In
this final compilation step, the fine-grained scheduling of
the micro-instructions is performed and optimised, and
finally registers and most other hardware resources are
allocated.

During micro-code scheduling a number of optimisa-
tions can be done at compile-time rather than through
complex and power-hungry hardware at execution-time.
Since only very few properties of the code execution are
handled dynamically at execution-time, static analysis of
the micro-code provides a rather accurate estimate of the
performance of a given application code and allows to
easily identify and understand possible bottlenecks.

7. Benchmarks

The overall performance of LGT applications is
dominated by the performance of just a few computational
kernels, like dot products and linear combinations of
vectors or their multiplication with the Wilson–Dirac
operator. Some benchmark results are shown in Table 1.
These numbers are obtained after a number of obvious

optimisations, like loop unrolling, performing memory
access in long bursts, forcing the code of the loop body to
be kept in the instruction buffer, or maximising the pipeline
filling by performing partial sums. Most of our benchmark
programs are written in assembly, but for some of them
similar performance has already been reached from high-
level language programs.
The benchmark for the Wilson–Dirac operator uses a

layout with only 23 � 16 lattice sites per node. This implies
a very high number of remote data accesses and
corresponds to the worst case for physical applications.
The remarkable efficiency was achievable only by extensive
use of the queue mechanism to pre-fetch all data as early as
possible and by exploiting concurrent communications
along links in different directions.
The performance of the linear algebra benchmarks

is mainly limited by the bandwidth of the memory access
and not by the FP throughput. The measured performance
is close to the maximal theoretical performance that
can be achieved when taking into account memory
constraints.
8. Conclusions

With apeNEXT a new generation of a special purpose
machines is becoming available for LQCD applications.
Large prototypes with 512 nodes have been assembled and
tested successfully. Benchmarks with LQCD codes achieve
excellent efficiencies with up to about 50% of peak
performance for the most relevant kernels.
The architecture is scalable up to systems with multi-

Tflops performance. Large installations are planned and
funded e.g. at INFN in Rome (6656 nodes), DESY
Zeuthen (2048 nodes), and University of Bielefeld (3072
nodes) for 2005/2006.
We expect apeNEXT to become a workhorse for LQCD

production in Europe similar as it is APEmille today. The
availability of the C programming language might also
help to port other applications on apeNEXT. It is also
remarkable how many architectural features found in
dedicated LQCD machines, like APE and QCDOC [4],

ARTICLE IN PRESS
F. Belletti et al. / Nuclear Instruments and Methods in Physics Research A 559 (2006) 90–9494
have been adopted by the latest massively parallel machine
developed by IBM [5].

Acknowledgements

We like to warmly thank all people who have
contributed to the apeNEXT project in the past, in
particular W. Errico, H. Kaldass, N. Paschedag, R. De
Pietri, F. Di Renzo, and L. Sartori.
References

[1] apeNEXT Collaboration F. Belletti, et al., Computing in Science and

Engineering, IEEE Computer Society, to be published.

[2] R. Tripiccione, Comput. Phys. Commun. 169 (2005) 442.

[3] APE Collaboration, Comput. Phys. Commun. 147 (2002) 402;

APE Collaboration, Nucl. Phys. Proc. Suppl. 140 (2005) 176.

[4] QCDOC Collaboration, Nucl. Phys. Proc. Suppl. 94 (2001) 825;

QCDOC Collaboration, Nucl. Phys. Proc. Suppl. 129 (2003) 838.

[5] See special issue on BlueGene/L of the IBM J. Res. Dev. 49(2/3) 2005.

	The apeNEXT project
	Introduction
	LQCD requirements
	apeNEXT enhancements
	Node architecture
	System architecture
	Software
	Benchmarks
	Conclusions
	Acknowledgements
	References

